题目链接

BZOJ4002

题解

容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根

那么就有

\[x^2 = bx - \frac{b^2 - d}{4}
\]

两边乘一个\(x^n\)

\[x^n = bx^{n - 1} - \frac{b^2 - d}{4}x^{n - 2}
\]

再观察题目条件,可以发现\(|b^2 - d| < 1\),所以明显要用到另一个根\(\frac{b - \sqrt{d}}{2}\)

我们设

\[f[i] = (\frac{b + \sqrt{d}}{2})^i + (\frac{b - \sqrt{d}}{2})^i
\]

那么就有

\[f[i] = bf[i - 1] - \frac{b^2 - d}{4}f[i - 2]
\]

矩乘优化一下就可以算出\(f[n]\)

\[ans = f[n] - (\frac{b - \sqrt{d}}{2})^n
\]

后面这个玩意是小于\(1\)的,所以我们只需要讨论一下其正负就可以判定出应该向哪边取整了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ULL unsigned long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
const ULL P = 7528443412579576937ll;
ULL mul(ULL a,ULL b){
ULL re = 0; b = (b % P + P) % P; a = (a % P + P) % P;
for (; b; b >>= 1,a = (a + a) % P) if (b & 1) re = (re + a) % P;
return re;
}
struct Matrix{
ULL s[2][2]; int n,m;
Matrix(){memset(s,0,sizeof(s)); n = m = 0;}
};
inline Matrix operator *(const Matrix& a,const Matrix& b){
Matrix c;
if (a.m != b.n) return c;
c.n = a.n; c.m = b.m;
for (int i = 0; i < c.n; i++)
for (int j = 0; j < c.m; j++)
for (int k = 0; k < a.m; k++)
c.s[i][j] = ((c.s[i][j] + mul(a.s[i][k],b.s[k][j])) % P + P) % P;
return c;
}
inline Matrix qpow(Matrix a,ULL b){
Matrix c; c.n = c.m = a.n;
for (int i = 0; i < c.n; i++) c.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) c = c * a;
return c;
}
int main(){
ULL b,d,n;
cin >> b >> d >> n;
if (n == 0){puts("1"); return 0;}
Matrix A,F,Fn;
A.n = A.m = 2;
A.s[0][0] = (b % P + P) % P; A.s[0][1] = (((d - b * b) / 4 % P) + P) % P;
A.s[1][0] = 1; A.s[1][1] = 0;
F.n = 2; F.m = 1;
F.s[0][0] = (b % P + P) % P; F.s[1][0] = 2;
Fn = qpow(A,n - 1) * F;
if (b * b != d && !(n & 1)) cout << ((Fn.s[0][0] - 1) % P + P) % P << endl;
else cout << Fn.s[0][0] << endl;
return 0;
}

BZOJ4002 [JLOI2015]有意义的字符串 【数学 + 矩乘】的更多相关文章

  1. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

  2. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  3. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  4. bzoj4002 [JLOI2015]有意义的字符串 快速幂

    Description B 君有两个好朋友,他们叫宁宁和冉冉. 有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求((b+sqrt(D)/2)^N的整数部分,请输出结果 Mod 752844341 ...

  5. bzoj4002 [JLOI2015]有意义的字符串 特征根+矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4002 题解 神仙题. 根据下面的一个提示: \[ b^2 \leq d \leq (b+1)^ ...

  6. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  7. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  8. [JLOI2015]有意义的字符串

    4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1000  Solved: 436[Submit][St ...

  9. 【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法

    题意: 给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937 ...

随机推荐

  1. python_42_文件补充

    m=['红烧肉\n','熘肝尖','西红柿炒鸡蛋','腊八粥','油焖大虾'] fname=input("请输入文件名:")#输入xxx f=open(fname,'w',enco ...

  2. 操作表单 -------JavaScrip

    本文摘要:http://www.liaoxuefeng.com/ HTML表单的输入控件主要有以下几种: 文本框,对应的<input type="text">,用于输入 ...

  3. 2018年ElasticSearch6.2.2教程ELK搭建日志采集分析系统(教程详情)

    章节一  2018年 ELK课程计划和效果演示1.课程安排和效果演示    简介:课程介绍和主要知识点说明,ES搜索接口演示,部署的ELK项目演示    es: localhost:9200    k ...

  4. Oracle Hint 之 Append

    1 描述 所谓直接路径操作,就是绕过buffer cache,直接将数据插入到表所在的数据文件中: 假如有表A,要将A中的数据插入到表B,在普通的间接插入下,先将A中的数据块传进buffer cach ...

  5. vue 采坑

    1.ref 在父组件中访问子组件实例,或者直接操作DOM元素时需要ref <input ref="ipt"> 通过this.$refs.ipt 得到此input $re ...

  6. linux网络编程之断点传输文件

    以下载链接"http://www.boa.org/boa-0.94.13.tar.gz"为例: 断点续传实验大概步骤: ===================== 1,使用geth ...

  7. 【C++学习笔记】强大的算法——spfa

    spfa的定义 PFA算法的全称是:Shortest Path Faster Algorithm,用于求单源最短路,由西南交通大学段凡丁于1994年发表.当给定的图存在负边时,Dijkstra算法就无 ...

  8. SpringBoot之HelloWorld仔细分析

    程序中的pom.xml文件: 一.父级标签 <parent> <groupId>org.springframework.boot</groupId> <art ...

  9. 微信公众帐号开发之一(java)

    闲来没事,就记录一下微信公众平台的开发吧~ 其实微信公众平台开发没有想象中的那么困难,因为注册了微信公众平台帐号登录之后在开发者模式里有详细的文档,个人感觉介绍还是比较详细的. 微信公众平台订阅号和服 ...

  10. form中 单选框 input[type="radio"] 分组

    在form中有时候需要给单选框分组,这种情况下 可以通过给单选框设置相同的name来进行分组: <html> <head> <title> </title&g ...