【文献阅读】Augmenting Supervised Neural Networks with Unsupervised Objectives-ICML-2016
一、Abstract
从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与supervised learning结合起来,提高了supervised learning的性能。主要是把autoencoder与CNN结合起来
二、Key words:
SAE;SWWAE; reconstruction;encoder;decoder;VGG-16;Alex-Net
三、 Motivation
- reconstruction loss 很有用,reconstruction loss可以看作一个regularizer(SWWAE文中提到).
- unsupervised learning会对model起一定的限定作用,即相当于一个regularizer,这个regularizer使得encoder阶段提取得到的特征具有可解释性
四、Main contributions
- 本文实验表明了,high-capacity neural networks(采用了known switches)的 intermediate activations 可以保存input的大量信息,除了部分
2.通过结合decoder pathway 的loss,提升了supervised learning model的分类正确率
3.做了几个 autoencoder模型的对比实验,发现: the pooling switches and the layer-wise reconstruction loss 非常重要!
五、Inspired by
- Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. Stacked what-where auto-encoders. ArXiv:1506.02351, 2015.
- Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR,2015.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks.In NIPS, 2012.
Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. Semi-supervised learning with ladder network.In NIPS, 2015. - Adaptive deconvolutional networks for mid and high level feature learning
- Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. Deconvolutional networks. CVPR, 2010.
- Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolu-tional networks for mid and high level feature learning.In ICCV, 2011.
key word:SWWAE;VGG-16;Alex-Net;ladder-Net;Deconvolutional network
六、文献具体实验及结果
1.SAE-all模型的训练:
第一步,采用VGG-16(训练好的VGG-16)初始化encoder,采用gaussian初始化decoder
第二步,固定encoder部分,用layerwise的方法训练decoder
第三步,用数据整体的训练更新decoder和encoder的参数
SAE-first模型的训练同SAE-all
SAE-layerwise一般只是拿来初始化 SAE-first SAE-all
SWWAE-all 提升了 1.66 % and 1.18% for single-crop and convolution schemes.
(top-1)
七、 感悟
- 2006~2010年期间, unsupervised learning 盛行是以为当时有标签数据不够大,所以需要用unsupervised leanring 的方法来初始化网络,可以取得较好效果,而 类似imagenet这样的大量标签数据的出现, 用autoencoder来初始化网络的优势已经没有。从这里也可以知道,当数据量较小时,可以考虑用unsupervised learning 的方法来初始化网络,从而提升分类准确率
- reconstruction loss 可以看作 regularization , 即是对enconder的weights做了一些限制,限制其获得的activations要能recon出input,是的提取得到的特征具有可解释性
【文献阅读】Augmenting Supervised Neural Networks with Unsupervised Objectives-ICML-2016的更多相关文章
- 【文献阅读】Self-Normalizing Neural Networks
Self-Normalizing Neural Networks ,长达93页的附录足以成为吸睛的地方(给人感觉很厉害), 此paper提出了新的激活函数,称之为 SELUs ,其具有normaliz ...
- 论文阅读 Streaming Graph Neural Networks
3 Streaming Graph Neural Networks link:https://dl.acm.org/doi/10.1145/3397271.3401092 Abstract 本文提出了 ...
- [ufldl]Supervised Neural Networks
要实现的部分为:forward prop, softmax函数的cost function,每一层的gradient,以及penalty cost和gradient. forwad prop forw ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- [Converge] Training Neural Networks
CS231n Winter 2016: Lecture 5: Neural Networks Part 2 CS231n Winter 2016: Lecture 6: Neural Networks ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...
随机推荐
- linux下創建啓動圖標
Linux下如何为刚安装好的Eclipse在桌面建一个启动图标?(QtCreator 也可以类似去做). 首先:gedit /usr/share/applications/eclipse.des ...
- AC日记——K-th Number poj 2104
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 52348 Accepted: 17985 Ca ...
- NULL和唯一约束UNIQUE的对应关系
NULL和唯一约束UNIQUE的对应关系 在数据库中,NULL表示列值为空.唯一约束UNIQUE规定指定列的值必须是唯一的,值和值之间都不能相同.这个时候,就出现一个问题,NULL和NULL算是相 ...
- Maven项目导入到Eclipse时Build出现the user operation is waiting for building workspace to complete的问题解决
解决办法如下: 1.选择菜单栏的[Project],然后把菜单栏中[Build Automatically]前面的对钩去掉.
- 80端口被屏蔽解决方法,80端口穿透之NAT端口映射技术
介绍一种NAT端口映射技术应用,达到80端口穿透目的,解决80端口被屏蔽的问题,也是80端口被屏蔽解决方法中经常用到的. 80端口穿透类似80端口转发,因为80端口被屏蔽,在数据层面来说是不能直接访问 ...
- wmware下载地址
https://my.vmware.com/cn/group/vmware/info?slug=desktop_end_user_computing/vmware_workstation/8_0 粗体 ...
- 主机屋 ubuntu 14安装nginx
http://www.cnblogs.com/piscesLoveCc/p/5794926.html 安装gcc g++的依赖库 1 sudo apt-get install build-essent ...
- C# 中的结构类型(struct type)
ylbtech- .NET-Basic:C# 中的结构类型(struct type) C# 中的结构类型(struct type) 1.A,相关概念返回顶部 像类一样,结构(struct)是能够包 ...
- 微信开发token验证失败
遇到token验证时: 1.首先检验是否是80端口或443端口,能否接收到微信的响应信息,如果使用域名,域名要备注,否则接收不到响应信息: 2.其次判断是否能正常echo $echoStr,之前不能有 ...
- Java程序员新手老手都离不开八大开发工具
以下这8个工具,从代码构建到错误挤压,覆盖Java开发的全域.学习这些工具可以帮助你改善代码质量,成为一个更高效的Java开发人员.Java这个大世界中正在不断涌现新的工具.实用程序和库.如果你的首选 ...