题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336

题意:

  有n种卡片(n <= 20)。

  对于每一包方便面,里面有卡片i的概率为p[i],可以没有卡片。

  问你集齐n种卡片所买方便面数量的期望。

题解:

  状态压缩。

  第i位表示手上有没有卡片i。

  表示状态:

    dp[state] = expectation

    (卡片状态为state时,要集齐卡片还要买的方便面数的期望)

  找出答案:

    ans = dp[0]

    刚开始一张卡片都没有。

  如何转移:

    now: dp[state]

    对于卡片i,如果手上已经有了i,则方便面里有i等价于面里什么都没有。

    所以子期望共两种:

      (1)拿到一张还没有的卡片i。

      (2)拿到垃圾2333。

    dp[state] = sigma( dp[state|(1<<i)] * p[i] ) + dp[state] * P(useless) + 1

    P(useless)为拿到垃圾的概率。

    设tot = sigma(p[i])

    P(useless) = 1 - tot

    原式移项后:

      dp[state] = ( sigma( dp[state|(1<<i)] * p[i] ) + 1 ) / tot

  边界条件:

    dp[(1<<n)-1] = 0

    已经集齐,不用再买。

AC Code:

 // state expression:
// dp[state] = expectation
// state: state of present cards
//
// find the answer:
// ans = dp[0]
//
// transferring:
// now: dp[state]
// dp[state] = sigma( dp[state|(1<<i)] * p[i] ) + dp[state] * P(useless) + 1
// i: not been collected
// dp[state] = ( sigma( dp[state|(1<<i)] * p[i] ) + 1 ) / (1 - P(useless))
// dp[state] = ( sigma( dp[state|(1<<i)] * p[i] ) + 1 ) / tot
//
// boundary:
// dp[(1<<n)-1] = 0
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 25
#define MAX_S ((1<<20)+5) using namespace std; int n;
double p[MAX_N];
double dp[MAX_S]; void read()
{
for(int i=;i<n;i++)
{
cin>>p[i];
}
} void solve()
{
memset(dp,,sizeof(dp));
for(int state=(<<n)-;state>=;state--)
{
double tot=;
for(int i=;i<n;i++)
{
if(!((state>>i)&))
{
dp[state]+=dp[state|(<<i)]*p[i];
tot+=p[i];
}
}
dp[state]=(dp[state]+1.0)/tot;
}
} void print()
{
printf("%.9f\n",dp[]);
} int main()
{
while(cin>>n)
{
read();
solve();
print();
}
}

HDU 4336 Card Collector:状压 + 期望dp的更多相关文章

  1. hdu 4336 Card Collector(状压dp/Min-Max反演)

    传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\( ...

  2. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  3. [HDU 4336] Card Collector (状态压缩概率dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...

  4. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  5. CF16E Fish(状压+期望dp)

    [传送门[(https://www.luogu.org/problemnew/show/CF16E) 解题思路 比较简单的状压+期望.设\(f[S]\)表示\(S\)这个状态的期望,转移时挑两条活着的 ...

  6. HDU 4336 Card Collector(状压 + 概率DP 期望)题解

    题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望 思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_ ...

  7. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  9. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  10. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. ionic 调试 "死亡白屏"

    死亡白屏(White Screen of Death) 我想“死亡白屏”应该是不需要解释的,开发过ionic app的童鞋应该都有遇到过,这里解释以防读者没有听说过:“可能在浏览器中调试时一切正常,当 ...

  2. Java函数的基本知识

    http://blog.csdn.net/cxwen78/article/details/7322891主要从Java函数的定义,函数的特点,函数的应用,函数的重载四个方面来讲解Java函数. 一.函 ...

  3. Linux在中国正在走向没落

    在中国,Linux正在走向没落,一片萧条景象. 在这样的大背景下.居然有人愿意接手中科红旗,令人佩服! 在中国,没有一个关于国际Linux的官方刊物(或站点)反映国际Linux运动的真实声音.Linu ...

  4. 在C#中怎样推断线程当前所处的状态

    在C#中怎样推断线程当前所处的状态 老帅       在C#中.线程对象Thread使用ThreadState属性指示线程状态.它是带Flags特性的枚举类型对象.    ThreadState 为线 ...

  5. 转:RC复位电路的原理及其复位时间的计算

    RC复位电路的原理及其复位时间的计算   低电平有效复位电路如下 此复位电路是针对低电平有效复位而言的,其中二极管是起着在断电的情况下能够很快的将电容两端的电压释放掉,为下次上电复位准备. 假设电容两 ...

  6. phpQuery—基于jQuery的PHP实现(转)

    Query的选择器之强大是有目共睹的,phpQuery 让php也拥有了这样的能力,它就相当于服务端的jQuery. 先来看看官方简介: phpQuery is a server-side, chai ...

  7. 关于ejabberd限制单点登录

    ejabberd 是对xmpp协议的完全实现,那么单纯的ejabberd是不提供该功能限制的,但是从我们的xmpp协议则可以完全的解决这个问题,我们通过jid对它进行限制,下面可以看一下jid的解释: ...

  8. js document.queryCommandState() 各个参数

    命令标识符 2D-Position 允许通过拖曳移动绝对定位的对象. AbsolutePosition 设定元素的 position 属性为“absolute”(绝对). BackColor 设置或获 ...

  9. eclipse中三大利器

    eclipse中两大利器: 首先说下用eclipse开发工具.进行java代码,开发的时候,我们开发完成以后.需要测试.大部分我们用Junit测试工具.可是内部的代码覆盖率.和结构我们看的不是那么详细 ...

  10. ASP.NET动态网站制作(12)-- JQ(4)

    前言:这节课接着上次课的继续讲. 内容:接上--> 1.jq元素样式设置:  (4)某个元素中是否含有某个css类别,返回布尔型:$("li:last").hasClass( ...