转载:SPFA算法学习
转载地址:http://www.cnblogs.com/scau20110726/archive/2012/11/18/2776124.html
粗略讲讲SPFA算法的原理,SPFA算法是1994年西安交通大学段凡丁提出
是一种求单源最短路的算法
算法中需要用到的主要变量
int n; //表示n个点,从1到n标号
int s,t; //s为源点,t为终点
int d[N]; //d[i]表示源点s到点i的最短路
int p[N]; //记录路径(或者说记录前驱)
queue <int> q; //一个队列,用STL实现,当然可有手打队列,无所谓
bool vis[N]; //vis[i]=1表示点i在队列中 vis[i]=0表示不在队列中
几乎所有的最短路算法其步骤都可以分为两步
1.初始化
2.松弛操作
初始化: d数组全部赋值为INF(无穷大);p数组全部赋值为s(即源点),或者赋值为-1,表示还没有知道前驱
然后d[s]=0; 表示源点不用求最短路径,或者说最短路就是0。将源点入队;
(另外记住在整个算法中有顶点入队了要记得标记vis数组,有顶点出队了记得消除那个标记)
队列+松弛操作
读取队头顶点u,并将队头顶点u出队(记得消除标记);将与点u相连的所有点v进行松弛操作,如果能更新估计值(即令d[v]变小),那么就更新,另外,如果点v没有在队列中,那么要将点v入队(记得标记),如果已经在队列中了,那么就不用入队
以此循环,直到队空为止就完成了单源最短路的求解
SPFA可以处理负权边
定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。
证明:
每次将点放入队尾,都是经过松弛操作达到 的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有 最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证 毕)
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
SPFA的两种写法,bfs和dfs,bfs判别负环不稳定,相当于限深度搜索,但是设置得好的话还是没问题的,dfs的话判断负环很快
int spfa_bfs(int s)
{
queue <int> q;
memset(d,0x3f,sizeof(d));
d[s]=0;
memset(c,0,sizeof(c));
memset(vis,0,sizeof(vis)); q.push(s); vis[s]=1; c[s]=1;
//顶点入队vis要做标记,另外要统计顶点的入队次数
int OK=1;
while(!q.empty())
{
int x;
x=q.front(); q.pop(); vis[x]=0;
//队头元素出队,并且消除标记
for(int k=f[x]; k!=0; k=nnext[k]) //遍历顶点x的邻接表
{
int y=v[k];
if( d[x]+w[k] < d[y])
{
d[y]=d[x]+w[k]; //松弛
if(!vis[y]) //顶点y不在队内
{
vis[y]=1; //标记
c[y]++; //统计次数
q.push(y); //入队
if(c[y]>NN) //超过入队次数上限,说明有负环
return OK=0;
}
}
}
} return OK; }
int spfa_dfs(int u)
{
vis[u]=1;
for(int k=f[u]; k!=0; k=e[k].next)
{
int v=e[k].v,w=e[k].w;
if( d[u]+w < d[v] )
{
d[v]=d[u]+w;
if(!vis[v])
{
if(spfa_dfs(v))
return 1;
}
else
return 1;
}
}
vis[u]=0;
return 0;
}
转载:SPFA算法学习的更多相关文章
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- [转载] Gossip算法学习
转载自http://blog.csdn.net/yfkiss/article/details/6943682/ 1. 概述gossip,顾名思义,类似于流言传播的概念,是一种可以按照自己的期望,自行选 ...
- SPFA 算法(剪辑)(学习!)
SPFA算法 单源最短路径的算法最常用的是Dijkstra,些算法从时间复杂度来说为O(n^2),但是面对含有负权植的图来说就无能为力了,此时 Dellman-ford算法就有用了,这咱算法是采用的是 ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- Cocos2d-x 2地图步行实现:SPFA算法
本文乃Siliphen原创,转载请注明出处:http://blog.csdn.net/stevenkylelee 上一节<Cocos2d-x 地图行走的实现1:图论与Dijkstra算法> ...
- 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结
刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...
- 最短路之SPFA算法
部分来自:http://blog.csdn.net/juststeps/article/details/8772755 求最短路径的算法有许多种,除了排序外,恐怕是OI界中解决同一类问题算法最多的了. ...
- 题目1008:最短路径问题(SPFA算法)
问题来源 http://ac.jobdu.com/problem.php?pid=1008 问题描述 给定一个G(V,E)有向图,起点s以及终点t,求最短路径. 问题分析 典型的单源最短路径问题,可以 ...
- <2014 05 09> Lucida:我的算法学习之路
[转载] 我的算法学习之路 关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口——况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以 ...
随机推荐
- WinForm启动时接收参数
1 默认的Main函数,修改如下: static class Program { /// <summary> /// 应用程序的主入口点. /// </summary> [ST ...
- kohana nginx的配置
kohana nginx的配置 location / { if (!-e $request_filename) { rewrite ^/(.*)$ /index.php? kohana_uri=/$1 ...
- 思维探索者:完善个人知识体系的重要性 Google只会告诉你结果
http://www.nowamagic.net/librarys/veda/detail/1711前面说了,人类解决问题大部分时候会习惯性地使用联想思维,简言之就是首先枚举你关于这个问题能够想到的所 ...
- java中类型的隐式转换
byte+byte=int,低级向高级是隐式类型转换,高级向低级必须强制类型转换,byte<char<short<int<long<float<double
- 使用OpenGL进行Mandelbrot集的可视化
Mandelbrot集是哪一集?? Mandelbrot集不是哪一集!! 啊不对-- Mandelbrot集是哪一集!! 好像也不对-- Mandelbrot集是数集!! 所以--他不是一集而是数集? ...
- Getting Started with the G1 Garbage Collector(译)
原文链接:Getting Started with the G1 Garbage Collector 概述 目的 这篇教程包含了G1垃圾收集器使用和它如何与HotSpot JVM配合使用的基本知识.你 ...
- Android之——卸载应用程序
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/47357729 不多说,不废话,直接上代码,大家都懂得 //卸载应用程序 //參数为 ...
- windows 2008配置运行PHP5.5.X
1.安装web5.0平台安装程序.web5.0平台安装程序:http://www.iis.net/downloads (实际上更方便的是用WebPlalform安装PHP:http://www.mic ...
- H2 应用实例1
说明:本例子开发工具为NetBeans,jdk 1.7 进行测试说明 H2安装说明如下 1. H2数据库必要文件下载地址为: http://www.h2database.com (1) 下载截 ...
- EasyPlayerPro(Windows)流媒体播放器开发之框架讲解
EasyPlayerPro for Windows是基于ffmpeg进行开发的全功能播放器,开发过程中参考了很多开源的播放器,诸如vlc和ffplay等,其中最强大的莫过于vlc,但是鉴于vlc框架过 ...