BZOJ_1296_[SCOI2009]粉刷匠_DP

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。


由于每行之间是独立的,可以分别对每行DP。

设h[i][j]表示前i个位置涂了j次。

然后放在一起,用每行使用涂的次数来转移。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
int h[55][55],g[55][55],f[55][2550],n,m,K,s1[55],s2[55];
char s[55];
int main() {
scanf("%d%d%d",&n,&m,&K);
int i,j,k,l;
for(i=1;i<=n;i++) {
scanf("%s",s+1);
for(j=1;j<=m;j++) s1[j]=s1[j-1]+(s[j]=='1'),s2[j]=s2[j-1]+(s[j]=='0');
memset(h,0,sizeof(h));
for(j=1;j<=m;j++) {
for(k=1;k<=j;k++) {
h[j][k]=h[j-1][k];
for(l=0;l<j;l++) {
h[j][k]=max(h[j][k],h[l][k-1]+max(s1[j]-s1[l],s2[j]-s2[l]));
}
}
}
for(j=1;j<=m;j++) g[i][j]=h[m][j];
}
int ans=0;
for(i=1;i<=n;i++) {
for(j=0;j<=K;j++) {
for(k=0;k<=j;k++) {
f[i][j]=max(f[i][j],f[i-1][k]+g[i][j-k]);
}
ans=max(ans,f[i][j]);
}
}
printf("%d\n",ans);
}

BZOJ_1296_[SCOI2009]粉刷匠_DP的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  4. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  5. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  6. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  7. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  8. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  9. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

随机推荐

  1. 启动eclipse时出现“Failed to load the JNI shared library jvm.dll”错误及解决-及eclipse版本查看

    启动eclipse时出现“Failed to load the JNI shared library jvm.dll”错误及解决-及eclipse版本查看 学习了:https://www.cnblog ...

  2. 随想录(fatfs的学习)

    [ 声明:版权全部,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 上学的时候就对文件系统非常有兴趣.可是苦于没有合适的fs代码能够学习.市面上的fs代码,要么太 ...

  3. HDU 1253:胜利大逃亡(简单三维BFS)

    pid=1253">胜利大逃亡 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/ ...

  4. C++静态库与动态库深入研究

    什么是库 库是写好的现有的,成熟的,可以复用的代码.现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常. 本质上来说库是一种可执行代码的二进制形式,可以被操 ...

  5. windows 平台 ffmeg h264 硬编码

    本文讲述windows 平台下ffmpeg如何利用intel media SDK 进行 h264硬编码(测试版本为3.2.2). ffmeg硬编编码的流程与软件编码流程相同,唯一不同的地方在初始化en ...

  6. 新建 .NET Core 控制台项目 C# 数组深拷贝

    新建 .NET Core 控制台项目 1. 安装 .NET Core SDK 1.0 参考微软官方网站 https://www.microsoft.com/net/download/windows 2 ...

  7. GTK入门学习:布局练习之计算器

    接下来,我们做一个布局练习.例如以下图: 我们用表格布局实现,表格布局參考坐标例如以下: 这里我们用到行编辑控件( GtkEntry ). 行编辑的创建: GtkWidget * gtk_entry_ ...

  8. Android自动折行TextView Group

    package com.test.testview; import java.util.ArrayList; import android.content.Context; import androi ...

  9. RYU改动监听port Mininet在custom自建拓扑和连接到指定控制器命令解释

    1.RYU控制器改动监听port 在ryu/ryu/ofproto以下的ofproto_common.py watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc ...

  10. 2014年辛星解读css第五节

    本小节我们解说css中的"盒模型".即"box model",它通经常使用于在布局的时候使用,这个"盒模型"也有人成为"框模型&q ...