题意:

已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值。

细节:

没有细节???感觉没有???

分析:

听说有两种方法!!!

好吧实际上是等价的只是看似状态不同罢了~~~ QAQ

Round1:枚举当前点取或不取,当前点 i 取的话那么在前 KK 的数中必须要选择一个数字点 k 不取并且将 k+1i 做为新的区间,最后取最优的 k 作为转移记录下来,并且其满足最有子结构。

所以状态就是:dp[i][0/1] 表示以 i 为结尾是否取 i 最大的区间

自然转移就是:

dp [ i ][ 0 ] = max ( dp [ i-1 ][ 0 ] , dp [ i-1 ][ 1 ] )

dp [ i ][ 1 ] = max ( dp [ i ][ 1 ] , dp [ k ][ 0 ] + sum [ i ] - sum [ k ]) ( i-KK ≤ k ≤ i - 1 )

Round2:好吧还有一种思路直接考虑那个断点 k ,并且不去这个断点。

状态就变成了: f [ i ] 表示以 i 为结尾且必须取 i 的最大价值。

根据思路转移个人感觉玄学:

f [ i ] = max ( f [ i ] , f [ k -1 ] + sum [ i ] - sum [ k ] ) ( i-KK ≤ k ≤ i - 1 )

其中的 sum [ ] 都表示序列的前缀和,同上。

好吧事实总不尽人意,看一眼数据范围顿时吸一口氧气,但是无论怎样都是 T L E ,好像是废话,活活的 N × N 的算法啊。但是观察观察方程, 比如 Round 2 中的我们使用一种高级的数学方法——加法交换律!!!

就能把式子变成这个样子 —— f [ i ] = max ( f [ k -1 ] - sum [ k ] ) + sum [ i ]

这是时候你就应该大叫一声这是定区间求最值啊,然后你想怎么做都可以了吧,线段树权值、树状数组之类的 好吧我们还是正常一点还是不去惹 log n 的时间复杂万一卡常呢,最后你就会明智的选择单调队列啦啦啦啦~~~(Ps:单调递减,咳咳)

其实某些大佬闭着眼睛不用想都可以,比如 c l yy j ql c t,啦啦啦

代码的荣耀时刻:

Round1:

#include<bits/stdc++.h>
#define LL long long
#define MAXN 100010
using namespace std; LL f[MAXN], dp[MAXN][2];
int que[MAXN], n, m; int main(){
scanf("%d%d", &n, &m);
for (int i=1; i<=n; i++){
LL x;
scanf("%lld", &x);
f[i]=f[i-1]+x;
}
int tail=1, head=1;
que[1]=0;
for (int i=1; i<=n; i++) {
dp[i][0]=max(dp[i-1][1], dp[i-1][0]);
while (head<=tail && que[head]<max(0, i-m)) head++;
dp[i][1]=dp[que[head]][0]-f[que[head]]+f[i];
while (head<=tail && dp[que[tail]][0]-f[que[tail]]<=dp[i][0]-f[i]) tail--;
que[++tail]=i;
}
printf("%lld\n", max(dp[n][1], dp[n][0]));
return 0;
}
Round2:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN=100010; int n, k, que[MAXN];
LL f[MAXN], dp[MAXN]; int main(){
scanf("%d%d", &n, &k);
for (int i=1; i<=n; i++) {
LL x;
scanf("%lld", &x);
f[i]=f[i-1]+x;
}
int head=1, tail=1;
for (int i=1; i<=n; i++){
while (head<=tail && que[head]<max(i-k, 0)) ++head;
dp[i]=dp[max(que[head]-1, 0)]+f[i]-f[que[head]];
while (head<=tail && dp[max(que[tail]-1, 0)]-f[que[tail]]<=dp[i-1]-f[i]) --tail;
que[++tail]=i;
}
printf("%lld\n", dp[n]);
return 0;
}

小结:

其实小蒟蒻觉得像这种类似单调队列优化 1 D / 1 D 动态规划的情况,难在最初始状态思考以及转移,优化过程以及代码实现可以多练体进行熟练。

Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)的更多相关文章

  1. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  2. [luogu P1776] 宝物筛选 解题报告(单调队列优化DP)

    题目链接: https://www.luogu.org/problemnew/show/P1776 题目: 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF ...

  3. 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)

    这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...

  4. Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)

    题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...

  5. P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...

  6. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  7. bzoj 1855 dp + 单调队列优化

    思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  8. 股票交易(DP+单调队列优化)

    题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...

  9. 【简洁易懂】CF372C Watching Fireworks is Fun dp + 单调队列优化 dp优化 ACM codeforces

    题目大意 一条街道有$n$个区域. 从左到右编号为$1$到$n$. 相邻区域之间的距离为$1$. 在节日期间,有$m$次烟花要燃放. 第$i$次烟花燃放区域为$a_i$ ,幸福属性为$b_i$,时间为 ...

随机推荐

  1. 基于阿里云SLB/ESS/EIP/ECS/VPC的同城高可用方案演练

    今天基于阿里云SLB/ESS/EIP/ECS/VPC等产品进行了一次同城高可用方案演练: 基本步骤如下: 1. 在华东1创建VPC网络VPC1,在华东1可用区B和G各创建一个虚拟交换机vpc1_swi ...

  2. 移动端meta的使用

    伴随着web app的不断火热,移动端可以说是未来的大趋势了,下面是常用的一下meta <!-- 声明文档使用的字符编码 --> <meta charset='utf-8'> ...

  3. 表单辅助函数-form_open()

    使用from_open()之前需要装载本辅助函数: $this->load->helper('form'); php===> echo form_open('email/send') ...

  4. 使用Intellij IDEA搭建一个简单的Maven项目

    IntelliJ IDEA是Java最优秀的开发工具,它功能全面,提示比较智能,开发界面炫酷,新技术支持的比较迅速. 我使用了Eclipse快10年了,IntelliJ IDEA这么好用必须要试一试. ...

  5. Jenkins执行shell脚本启动tomcat失败解决方法

    环境:Centos 7 Jenkins版本:2.124 状况:Jenkins会执行服务器某个目录下的Shell, 脚本中功能是复制替换某两个配置文件,然后关闭tomcat,重启Tomcat. 但是,T ...

  6. 非常实用的Linux 系统监控工具

    随着互联网行业的不断发展,各种监控工具多得不可胜数.这里列出网上最全的监控工具.让你可以拥有超过80种方式来管理你的机器.在本文中,我们主要包括以下方面: 命令行工具 网络相关内容 系统相关的监控工具 ...

  7. COGS 1710. [POJ2406]字符串的幂

    ★☆   输入文件:powerstrings.in   输出文件:powerstrings.out   简单对比时间限制:3 s   内存限制:256 MB [题目描述] 对于给定的两个字符串a,b, ...

  8. IOS7 Text View 截断的问题解决

    - (void)textViewDidChange:(UITextView *)textView { CGRect line = [textView caretRectForPosition: tex ...

  9. vue watch 监听

    1.普通的watch data() { return { frontPoints: 0 } }, watch: { frontPoints(newValue, oldValue) { console. ...

  10. 基于KMeans的指数择时策略

    [导语]:聚类分析是指将物理或者抽象对象的结合分组为由类似对象组成的多个类的分析过程.简单来讲,聚类就是通过一些特征去自动识别一个大群体中的多个子群体,这些子群体中的对象彼此之间相似度高,而子群体之间 ...