Cryptography I 学习笔记 --- 基于Diffie-Hellman的公钥加密
1. Diffie-Hellman协议:
假定g是集合G的生成元,G有n个元素。
Alice随机选取1-n中的一个数a,并公布ga为公钥
Bob随机选取1-n中的一个数b,并公布gb为公钥
那么gab就是Alice与Bob之间的私钥
从公钥中提取私钥,是一个离散对数问题,难以解决。
裸的Diffie-Hellman协议有中间人攻击的风险
2. Elgamal系统
n阶有限循环群G,哈希函数H,对称加密算法Es与Ds
Alice随机选取G的一个生成元g,从1到n-1间随机选取一个数a
Alice将a作为私钥,将(g,ga)作为公钥
现在Bob想要将消息m发送给Alice
加密:Bob从1到n-1间随机选取一个数b,计算u=gb,计算v=gab
计算k = H(u,v),再计算c = Es(k,m)
然后将(u,c)作为密文发送出去
解密:Alice接收到密文(u,c)
由于u=gb,Alice可以计算ua=gab=v
同样的,可以到k = H(u,v),然后就可以得到明文m = Ds(k,c)
3. Elgamal系统是选择密文安全的
4. twin Elgamal
Alice随机选取G的一个生成元g,从1到n-1间随机选取两个数a1与a2
Alice将(a1,a2)作为私钥,将(g,ga1,ga2)作为公钥
加密:Bob从1到n-1间随机选取一个数b
计算k = H(gb,ga1*b,ga2*b),再计算c = Es(k,m),输出(gb,c)
解密:Alice计算k = H(gb,ga1*b,ga2*b),得到明文m = Ds(k,c)
5. 单向函数
有函数f将集合X映射到集合Y,如果计算f是容易的,计算f-1是困难的,那么f就是单向函数
6. 离散对数单向函数
n阶有限循环群G,其生成元为g,定义函数f(x) = gx ∈ G。那么f是单向的。
离散对数单向函数有一些有趣的性质:f(x+y) = f(x) * f(y)也就是我们只需要知道f(x)与f(y)的值,不需要知道x与y的具体值,就能计算出f(x+y)
7. RSA单向函数
随机选择两个质数p,q,计算n = p * q,构造整数e与d,并且e*d = 1 mod φ(n)
定义函数f(x) = xe mod n,那么f是单向的
RSA单向函数的特殊性质在于 f(x*y) = f(x) * f(y),
Cryptography I 学习笔记 --- 基于Diffie-Hellman的公钥加密的更多相关文章
- Cryptography I 学习笔记 --- 基于陷门置换的公钥加密
RSA算法的工作流程 1. 生成公钥私钥 生成两个素数p和q,计算n=p*q,计算φ(n)=n-p-q+1,然后生成e与d,使 e * d = 1 mod φ(n). 然后以(n, e)作为公钥,(n ...
- Linux学习笔记——基于鸟哥的Linux私房菜
Linux学习笔记--基于鸟哥的Linux私房菜 ***** ARM与嵌入式linux的入门建议 (1) 学习基本的裸机编程:ARM7或ARM9,理解硬件架构和控制原理 (这一步是绝对的根基) (2) ...
- WCF学习笔记(基于REST规则方式)
一.WCF的定义 WCF是.NET 3.0后开始引入的新技术,意为基于windows平台的通讯服务. 首先在学习WCF之前,我们也知道他其实是加强版的一个面向服务(SOA)的框架技术. 如果熟悉Web ...
- deep learning深度学习之学习笔记基于吴恩达coursera课程
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), ...
- Linux常用命令学习笔记——基于CentOS 7
前言:最近在linux培训时复习了一下linux系统中一些常用的命令和用法,整理成了笔记,虽然些许零散,但希望对大家有所帮助. 目录 0.帮助指令 1.关机.重启.注销命令 2.文件和目录操作命令 3 ...
- Cryptography I 学习笔记 --- 总结
在b站上大概的看完了Dan Boneh的密码学,对现代密码学总算有了一个粗浅的认识. 总算能在纸上手写RSA公式并且证明之了,蛤蛤. 总体的感触就是,现代密码学是一个非常博大精深的体系,我等程序员最重 ...
- Cryptography I 学习笔记 --- 密钥交换
1. 使用可信第三方(Trusted third parties)进行密钥交换. a. Alice与TTP之间的密钥是K1,Bob与TTP之间的密钥是K2. b. Alice向TTP发起一个与Bob交 ...
- Cryptography I 学习笔记 --- 信息完整性
1. ECBC-MAC,需要一对密钥k与k1,然后将明文分组,用cbc模式对明文分块加密,将最后的密文块再用k1进行加密,即可得到结果 2. NMAC,需要一对密钥k与k1,然后将明文分组,用k加密第 ...
- Vue学习笔记-基于CDN引入方式简单前后端分离项目学习(Vue+Element+Axios)
一 使用环境 开发系统: windows 后端IDE: PyCharm 前端IDE: VSCode 数据库: msyql,navicat 编程语言: python3.7 (Windows x86- ...
随机推荐
- B - Sonya and Exhibition CodeForces - 1004B (思维题)
B. Sonya and Exhibition time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Uva:11401-Triangle Counting
Triangle Counting Time limit1000 ms Description You are given n rods of length 1, 2-, n. You have to ...
- Spring加载配置文件的几种方法(org.springframework.beans.factory.BeanDefinitionStoreException)
一:Spring中的几种容器都支持使用xml装配bean,包括:XmlBeanFactory ,ClassPathXmlApplicationContext ,FileSystemXmlApplica ...
- Python及其常用模块库下载及安装
一.Python下载:https://www.python.org/downloads/ 二.Python模块下载:http://www.lfd.uci.edu/~gohlke/pythonlibs/ ...
- Python中@property和@classmethod和@staticmethod
前戏 首先,先要弄清楚一个类里面的,各个组成部分都应该怎么称呼. - 注:可能叫法会不太一样. 关于@property 顾名思义:它的意思为‘属性’. 作用: 1:使用它你将会把类方法,变为类属性.并 ...
- mybatis sql转义符号
第一种写法:通过<![CDATA[ ]]>符号来写 大于等于:<![CDATA[ >= ]]> 小于等于:<![CDATA[ <= ]]> 例如:sql ...
- Spring整合hibernate -hibernateTemplate
目录 1 在Spring中初始化hibernateTemplate并注入Sessionfactory 2 DAO里注入hibernateTemplate 3 getHibernateTemplate. ...
- 微信小程序--微信小程序tabBar不显示:缺少文件,错误信息:error:iconPath=
1.list中的第一个tab的地址必须定义在pages 中 2.pagePath的地址一定要正确 正确写法是: "tabBar": { "color": &qu ...
- loadrunner rtsp协议模拟
在核心网做过3年的sip消息模拟,所以rtsp消息模拟只要知道信令消息交互就非常顺利了 RTSP 实时流传输协议, 是TCP/IP协议体系中的一个应用层协议, 该协议定义了一对多应用程序如何有效地通过 ...
- Puppet单机实战之Nginx代理Tomcat
author:JevonWei 版权声明:原创作品 blog:http://119.23.52.191/ --- 构建实战之Nginx代理Tomcat [root@node1 modules]# mk ...