4002: [JLOI2015]有意义的字符串

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1000  Solved: 436
[Submit][Status][Discuss]

Description

B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求

 
 

Input

一行三个整数 b;d;n

 

Output

一行一个数表示模 7528443412579576937 之后的结果。

 

Sample Input

1 5 9

Sample Output

76

HINT

其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且 b mod 2=1,d mod 4=1

 
 
一开始幼稚的以为可以把sqrt(d)在%7528443412579576937 同余系下表示成一个整数,但后来发现我太naive了。
可以先找到((b+sqrt(d))/2)^n的共轭函数((b-sqrt(d))/2)^n,设这两者的和为f[n]。
那么我们相当于知道了两个基底等比数列,来构造出f[i]的递推式。
显然两个基底的只能是和前两项有关,于是我们设f[i+2]+ k * f[i+1] + p * f[i] =0
那么,可以得到 x^2 + k*x + p =0。
这个方程的两个根分别是 (b+sqrt(d))/2 和 (b-sqrt(d))/2
所以我们带回去就可以求得k和p。
然后就可以开开心心的 用矩阵快速幂求 f[n]了。
但问题是怎么减去共轭函数的另一支呢?
有一个结论是当且仅当 b==d^2且n为偶数的时候需要-1,但是我也不知道为什么2333。
 
#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
const ll ha=7528443412579576937ll; inline ll add(ll x,ll y){
x+=y;
return x>=ha?x-ha:x;
} inline ll ksc(ll x,ll y){
ll an=0;
for(;y;y>>=1,x=add(x,x)) if(y&1) an=add(an,x);
return an;
} inline ll ksm(ll x,ll y){
ll an=1;
for(;y;y>>=1,x=ksc(x,x)) if(y&1) an=ksc(an,x);
return an;
} const ll inv=ksm(2,ha-2);
const ll INV=ksc(inv,inv);
ll B,D,N;
struct node{
ll a[2][2]; node operator *(const node &u)const{
node r;
for(int i=0;i<=1;i++)
for(int j=0;j<=1;j++){
r.a[i][j]=add(ksc(a[i][0],u.a[0][j]),ksc(a[i][1],u.a[1][j]));
}
return r;
}
}ans,x; inline void solve(){
ans.a[0][0]=ans.a[1][1]=1;
ans.a[0][1]=ans.a[1][0]=0; ll O=N;
N--;
for(;N;N>>=1,x=x*x) if(N&1) ans=ans*x; ll an=0;
an=add(ksc(2,ans.a[0][1]),ksc(B,ans.a[1][1])); if(ksc(B,B)!=D&&!(O&1)) an=add(an,ha-1);
printf("%lld\n",an);
} int main(){
scanf("%lld%lld%lld",&B,&D,&N);
if(!N){
puts("1");
return 0;
} x.a[0][0]=0;
x.a[1][0]=1;
x.a[1][1]=B;
x.a[0][1]=(D-ksc(B,B))>>2; solve(); return 0;
}

  

[JLOI2015]有意义的字符串的更多相关文章

  1. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  2. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  3. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

  4. 【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法

    题意: 给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937 ...

  5. 【BZOJ】4002: [JLOI2015]有意义的字符串

    题意 求$\left \lfloor \left( \frac{b+\sqrt{d}}{2} \right)^n \right \rfloor \pmod {7528443412579576937} ...

  6. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  7. bzoj 4002: [JLOI2015]有意义的字符串

    这个题... #include <bits/stdc++.h> #define rep(i, a, b) for (int i = a; i <= b; i++) #define d ...

  8. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  9. 【bzoj4002】[JLOI2015]有意义的字符串 数论+矩阵乘法

    题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 ...

随机推荐

  1. Java程序占用实际内存大小

    很多人错误的认为运行Java程序时使用-Xmx和-Xms参数指定的就是程序将会占用的内存,但是这实际上只是Java堆对象将会占用的内存.堆只是影响Java程序占用内存数量的一个因素.要更好的理解你的J ...

  2. luogu2093 [国家集训队]JZPFAR

    题面不符?-- #include <algorithm> #include <iostream> #include <cstdio> using namespace ...

  3. IOS开发---菜鸟学习之路--(十七)-利用UITableView实现个人信息界面

    首先来看下我们要实现的效果 需要实现这样的效果 然后我们开始动手吧. 首先选择添加一个新的ViewController 然后打开XIB文件,添加一UITableView 并将样式设置为分组 同时将按住 ...

  4. IOS开发---菜鸟学习之路--(二)-数据获取

    第二篇了. 本篇要讲的是数据获取. 为什么将数据获取放在第二篇就讲呢? 因为我在看别人教程的时候都是先讲控件的属性,然后怎么用控件开始. 可是毕竟咱们也是有一定开发经验的人..所以很自然就想先知道怎么 ...

  5. Python基础-week01 Python安装/变量/输入/及循环语句使用

      一.Python介绍 (1).目前Python主要应用领域: 云计算: 云计算最火的语言, 典型应用OpenStack WEB开发: 众多优秀的WEB框架,众多大型网站均为Python开发,You ...

  6. 整理 pycharm console调试博客

    在Debug模式下,查看变量发现只能看到300个变量,报错: two large to show contents. Max items to show:300. 点击Debugger左侧consol ...

  7. 单元测试-mock基础

    本文较短,只是备份一下mock的几个常用基础例子方便复习 目录 介绍mock的使用例子 maven资源 <dependency> <groupId>org.mockito< ...

  8. structs2 对ActionContext valueStack stack context 的理解 图片实例

    structs2 对ActionContext valueStack stack context 的理解 ActionConext : The ActionContext is the context ...

  9. [ZJOI2011][bzoj2229] 最小割 [最小割树]

    题面 传送门 思路 首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍[废话] 但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?) 那我们就要尽量找 ...

  10. linux系统初始化——sysinit文件写法详解

    sysinit文件写法详解 sysinit文件是linux初始化文件系统时执行的第一个脚本文件.它主要做在各个运行级别中进行初始化工作,包括: 启动交换分区;检查磁盘;设置主机名;检查并挂载文件系统; ...