4002: [JLOI2015]有意义的字符串

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1000  Solved: 436
[Submit][Status][Discuss]

Description

B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求

 
 

Input

一行三个整数 b;d;n

 

Output

一行一个数表示模 7528443412579576937 之后的结果。

 

Sample Input

1 5 9

Sample Output

76

HINT

其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且 b mod 2=1,d mod 4=1

 
 
一开始幼稚的以为可以把sqrt(d)在%7528443412579576937 同余系下表示成一个整数,但后来发现我太naive了。
可以先找到((b+sqrt(d))/2)^n的共轭函数((b-sqrt(d))/2)^n,设这两者的和为f[n]。
那么我们相当于知道了两个基底等比数列,来构造出f[i]的递推式。
显然两个基底的只能是和前两项有关,于是我们设f[i+2]+ k * f[i+1] + p * f[i] =0
那么,可以得到 x^2 + k*x + p =0。
这个方程的两个根分别是 (b+sqrt(d))/2 和 (b-sqrt(d))/2
所以我们带回去就可以求得k和p。
然后就可以开开心心的 用矩阵快速幂求 f[n]了。
但问题是怎么减去共轭函数的另一支呢?
有一个结论是当且仅当 b==d^2且n为偶数的时候需要-1,但是我也不知道为什么2333。
 
#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
const ll ha=7528443412579576937ll; inline ll add(ll x,ll y){
x+=y;
return x>=ha?x-ha:x;
} inline ll ksc(ll x,ll y){
ll an=0;
for(;y;y>>=1,x=add(x,x)) if(y&1) an=add(an,x);
return an;
} inline ll ksm(ll x,ll y){
ll an=1;
for(;y;y>>=1,x=ksc(x,x)) if(y&1) an=ksc(an,x);
return an;
} const ll inv=ksm(2,ha-2);
const ll INV=ksc(inv,inv);
ll B,D,N;
struct node{
ll a[2][2]; node operator *(const node &u)const{
node r;
for(int i=0;i<=1;i++)
for(int j=0;j<=1;j++){
r.a[i][j]=add(ksc(a[i][0],u.a[0][j]),ksc(a[i][1],u.a[1][j]));
}
return r;
}
}ans,x; inline void solve(){
ans.a[0][0]=ans.a[1][1]=1;
ans.a[0][1]=ans.a[1][0]=0; ll O=N;
N--;
for(;N;N>>=1,x=x*x) if(N&1) ans=ans*x; ll an=0;
an=add(ksc(2,ans.a[0][1]),ksc(B,ans.a[1][1])); if(ksc(B,B)!=D&&!(O&1)) an=add(an,ha-1);
printf("%lld\n",an);
} int main(){
scanf("%lld%lld%lld",&B,&D,&N);
if(!N){
puts("1");
return 0;
} x.a[0][0]=0;
x.a[1][0]=1;
x.a[1][1]=B;
x.a[0][1]=(D-ksc(B,B))>>2; solve(); return 0;
}

  

[JLOI2015]有意义的字符串的更多相关文章

  1. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  2. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  3. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

  4. 【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法

    题意: 给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937 ...

  5. 【BZOJ】4002: [JLOI2015]有意义的字符串

    题意 求$\left \lfloor \left( \frac{b+\sqrt{d}}{2} \right)^n \right \rfloor \pmod {7528443412579576937} ...

  6. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  7. bzoj 4002: [JLOI2015]有意义的字符串

    这个题... #include <bits/stdc++.h> #define rep(i, a, b) for (int i = a; i <= b; i++) #define d ...

  8. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  9. 【bzoj4002】[JLOI2015]有意义的字符串 数论+矩阵乘法

    题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 ...

随机推荐

  1. Java面向对象---泛型

    概念 泛型可以解决数据类型的安全问题,主要原理是在类声明的时候通过一个标识表示类中某个属性的类型或者是某个方法的返回值及参数类型. 格式 访问权限 class 类名称<泛型,泛型...>{ ...

  2. Java多线程并发技术

    Java多线程并发技术 参考文献: http://blog.csdn.net/aboy123/article/details/38307539 http://blog.csdn.net/ghsau/a ...

  3. vim的常用操作

      vim的几种编辑模式 正常模式:可以使用快捷键命令,或按:输入命令行. 插入模式:可以输入文本,在正常模式下,按i.a.o等都可以进入插入模式. 可视模式:正常模式下按v可以进入可视模式, 在可视 ...

  4. 几条 ffmpeg 的命令

    1,获取视频的信息   ffmpeg -i video.avi 2,将图片序列合成视频   ffmpeg -f image2 -i image%d.jpg video.mpg   上面的命令会把当前目 ...

  5. 输出1到最大的N位数 【微软面试100题 第六十五题】

    题目要求: 输入数字n,按顺序输出从1到最大的n位10进制数. 例如,输入3,则输出1.2.3....999(最大的3位数). 参考资料:剑指offer第12题. 题目分析: 如果我们在数字前面补0的 ...

  6. fastjosn在低版本丢字段问题

    简单的说: 对于java bean中有字段类似pId这种写法,特征是第一个字母小写,第二个字母大写,在eclipse中生成的getter setter方法是 getpId, setpId. 在低版本的 ...

  7. load_file()与into outfile函数详解

    load_file()函数的使用: 1.使用条件 ①有读取文件的权限 r and (select count(*) from mysql.user)>0 如果返回正常则说明有权限,反之没有 ②文 ...

  8. python2.X中文乱码

    在IDE下,加上# -- coding: UTF-8 -- 并且保证IDE也是utf-8编码. 在CMD下,这样执行会有乱码,为啥呢,因为cmd下是gbk编码的,你写的代码必须也是gbk编码的,你可以 ...

  9. Wordpress Uncaught TypeError: b(...).not(...).filter(...).mediaelementplayer is not a function

    Wordpress 插件页面报错如下图: 原因及解决方法: 引入了两次 jquery.js 或 jquery.js 定义的变量导致报错,删除在插件页面自己引入的 jquery,js 即可解决报错. 大 ...

  10. SGX技术初探

    一.SGX技术背景 1.1 SGX技术定义 SGX全称Intel Software Guard Extensions,顾名思义,其是对因特尔体系(IA)的一个扩展,用于增强软件的安全性.这种方式并不是 ...