Sorry,各位,现在这里面啥也没,之所以开这篇文章,是防止以后用得到;现在研究这些,总感觉有些不合适,本人还不到那个层次;如果之后有机会继续研究simplex-线性规划问题,再回来参考下面的链接进行学习,也就相当于做个笔记吧。

  各位大佬勿怪。

  下面几篇文章,觉得写的不错,从最开始将起;至于本人,肯定是没有学习完的。

Reference

最优化理论-Simplex线性规划的更多相关文章

  1. 单纯形方法(Simplex Method)

    最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下.单纯形方法是求解线性规划问题的一种基本方法. 线性规划就是在一系列 ...

  2. 【UOJ 179】 #179. 线性规划 (单纯形法)

    http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$    $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...

  3. Mathematical optimization数学上的最优化

    https://en.wikipedia.org/wiki/Mathematical_optimization In mathematics, computer science and operati ...

  4. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

  5. 3D打印:三维智能数字化创造(全彩)

    3D打印:三维智能数字化创造(全彩)(全球第一本系统阐述3D打印与3D智能数字化的专业著作) 吴怀宇 编   ISBN 978-7-121-22063-0 2014年1月出版 定价:99.00元 42 ...

  6. 支持向量机通俗导论(理解SVM的三层境界)

    原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算 ...

  7. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  8. 《3D打印:三维智能数字化创造(全彩)》

    <3D打印:三维智能数字化创造(全彩)> 基本信息 作者: 吴怀宇 出版社:电子工业出版社 ISBN:9787121220630 上架时间:2014-1-13 出版日期:2014 年1月 ...

  9. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

随机推荐

  1. 流畅的python学习笔记:第十三章:重载运算符__add__,__iadd__,__radd__,__mul__,__rmul__,__neg__,__eq__,__invert__,__pos__

    在前面第十章以及第一章的时候介绍了Vector对象的运算符重载.第十三章专门介绍运算符重载.这里我们看几个之前没讲过的运算符__neg__,__pos__,__invert__ class Vecto ...

  2. Java for LeetCode 100 Same Tree

    Given two binary trees, write a function to check if they are equal or not. Two binary trees are con ...

  3. 一个商品SKU是怎么生成的

    首先说一说什么是SKU.......自己百度去... 类似京东上面,未来人类S5这个台笔记本(没错,我刚入手了) 都是S5这个型号,但是因为CPU,显卡,内存,硬盘等不同,价格也不一样.CPU,显卡, ...

  4. Builder 模式初探

    Builder 模式是一步一步创建一个复杂对象的创建型模式,它允许用户在不知道内部构建细节的情况下,可以更精细的控制对象的构造流程.该模式是为了将构建复杂对象的过程和它的部件解耦,使得构建过程和部件的 ...

  5. [egret+pomelo]实时游戏杂记(4)

    了解了前后端的通信,下面就可以开始自己的业务逻辑了,首先玩家输入名称,选择角色后进入游戏世界. 服务端的demo中已经提供了一些简单的角色信息和属性,数据地址位于 game-server/config ...

  6. HDU3811 Permutation —— 状压DP

    题目链接:https://vjudge.net/problem/HDU-3811 Permutation Time Limit: 6000/3000 MS (Java/Others)    Memor ...

  7. Spring Boot2.0之纯手写框架

    框架部分重点在于实现原理,懂原理! 废话不多说,动手干起来! SpringMVC程序入口? 没有配置文件,Spring 容器是如何加载? 回顾我们之前搭建Spring Boot项目使用的pom 引入的 ...

  8. nginx日志分析命令记录

    这是要注意的 可能因为 线上 nginx日志输出格式的不一样,一下命令未能展示正确的结果 流量速率分析的第三个命令 慢查询分析的第一二个命令 参考文档,nginx日志输出格式为 $remote_add ...

  9. ansible mysql模块的使用今年

    摘自: https://www.ibm.com/developerworks/cn/linux/1502_lih_ansible/

  10. 国画经典之梅花PSD素材

    国画经典之梅花图片PSD素材,由huiyi8素材网提供. 地址:http://www.huiyi8.com/meihua/​