1.Series
生成一维数组,左边索引,右边值:
In [3]: obj = Series([1,2,3,4,5])
In [4]: obj
Out[4]:
0 1
1 2
2 3
3 4
4 5
dtype: int64
In [5]: obj.values
Out[5]: array([1, 2, 3, 4, 5], dtype=int64)
In [6]: obj.index
Out[6]: RangeIndex(start=0, stop=5, step=1)

创建对各个数据点进行标记的索引:

In [7]: obj2 = Series([4,1,9,7], index=["a","c","e","ff"])
In [8]: obj2
Out[8]:
a 4
c 1
e 9
ff 7
dtype: int64
In [9]: obj2.index
Out[9]: Index(['a', 'c', 'e', 'ff'], dtype='object')

取一个值或一组值:

In [10]: obj2["c"]
Out[10]: 1
In [11]: obj2[["c","e"]]
Out[11]:
c 1
e 9
dtype: int64

数组运算,会显示索引:

In []: obj2[obj2>]
Out[]:
a
e
ff
dtype: int64
Series还可以看作有序的字典,很多字典操作可以使用:
In [13]: "c" in obj2
Out[13]: True
直接用字典创建Series:
In [14]: data = {"name":"liu","year":18,"sex":"man"}
In [15]: obj3 = Series(data)
In [16]: obj3
Out[16]:
name liu
year 18
sex man
dtype: object
用字典结合列表创建Series:
In [17]: list1 = ["name","year","mobile"]
In [18]: obj4 = Series(data,index=list1)
In [19]: obj4
Out[19]:
name liu
year 18
mobile NaN
dtype: object

PS:因为data字典中没有mobile所以值为NaN

 
检测数据是否缺失:
In [20]: pd.isnull(obj4)
Out[20]:
name False
year False
mobile True
dtype: bool In [21]: pd.notnull(obj4)
Out[21]:
name True
year True
mobile False
dtype: bool In [22]: obj4.isnull()
Out[22]:
name False
year False
mobile True
dtype: bool In [23]: obj4.notnull()
Out[23]:
name True
year True
mobile False
dtype: bool
Series的name属性:
In [7]: obj4.name = "hahaha"
In [8]: obj4.index.name = "state"
In [9]: obj4
Out[9]:
state
name liu
year 18
mobile NaN
Name: hahaha, dtype: object
2.DataFrame
构建DataFrame
In [13]: data = {
"state":[1,1,2,1,1],
"year":[2000,2001,2002,2004,2005],
"pop":[1.5,1.7,3.6,2.4,2.9]
}
In [14]: frame = DataFrame(data)
In [15]: frame
Out[15]:
state year pop
0 1 2000 1.5
1 1 2001 1.7
2 2 2002 3.6
3 1 2004 2.4
4 1 2005 2.9
设定行与列的名称,如果数据找不到则产生NA值:
In [18]: frame2 = DataFrame(
data,
columns=["year","state","pop","debt"],
index=["one","two","three","four","five"]
)
In [19]: frame2
Out[19]:
year state pop debt
one 2000 1 1.5 NaN
two 2001 1 1.7 NaN
three 2002 2 3.6 NaN
four 2004 1 2.4 NaN
five 2005 1 2.9 NaN
将DataFrame的列获取成为Series:
In [7]: frame2.year
Out[7]:
one 2000
two 2001
three 2002
four 2004
five 2005
Name: year, dtype: int64

PS:返回的索引不变,且name属性被设置了

获取行:
In [11]: frame2.loc["three"]
Out[11]:
year 2002
state 2
pop 3.6
debt NaN
Name: three, dtype: object
赋值列:
In [12]: frame2['debt'] = 16.5
In [13]: frame2
Out[13]:
year state pop debt
one 2000 1 1.5 16.5
two 2001 1 1.7 16.5
three 2002 2 3.6 16.5
four 2004 1 2.4 16.5
five 2005 1 2.9 16.5
如果赋值列表或数组,长度需要相等;如果赋值Series,则精确匹配索引
In [17]: val = Series([1.2,1.5,1.7], index=["two","four","five"])
In [18]: frame2['debt'] = val
In [19]: frame2
Out[19]:
year state pop debt
one 2000 1 1.5 NaN
two 2001 1 1.7 1.2
three 2002 2 3.6 NaN
four 2004 1 2.4 1.5
five 2005 1 2.9 1.7
如果列不存在,则创建:
In [21]: frame2["eastern"] = frame2.state == 1
In [22]: frame2
Out[22]:
year state pop debt eastern
one 2000 1 1.5 NaN True
two 2001 1 1.7 1.2 True
three 2002 2 3.6 NaN False
four 2004 1 2.4 1.5 True
five 2005 1 2.9 1.7 True
对于嵌套字典,DataFrame会解释为外层为列,内层为行索引:
In [23]: dic = {"name":{"one":"liu","two":"rui"},"year":{"one":"","two":""}}
In [24]: frame3 = DataFrame(dic)
In [25]: frame3
Out[25]:
name year
one liu 23
two rui 22
显示行,列名:
In [26]: frame3.index.name = "index"
In [27]: frame3.columns.name = "state"
In [28]: frame3
Out[28]:
state name year
index
one liu 23
two rui 22
返回二维ndarray形式的数据:
In [29]: frame3.values
Out[29]:
array([['liu', ''],
['rui', '']], dtype=object)
3.索引对象

In [30]: obj = Series(range(3),index=["a","b","c"])
In [31]: index = obj.index
In [32]: index
Out[32]: Index(['a', 'b', 'c'], dtype='object')
index对象不可修改的,使得index在多个数据结构中可以共享
In [35]: index = pd.Index(np.arange(3))
In [36]: obj2 = Series([1.5,0.5,2],index=index)
In [37]: obj2.index is index
Out[37]: True

pandas知识点(数据结构)的更多相关文章

  1. 机器学习-Pandas 知识点汇总(吐血整理)

    Pandas是一款适用很广的数据处理的组件,如果将来从事机械学习或者数据分析方面的工作,咱们估计70%的时间都是在跟这个框架打交道.那大家可能就有疑问了,心想这个破玩意儿值得花70%的时间吗?咱不是还 ...

  2. Pandas 的数据结构

    Pandas的数据结构 导入pandas: 三剑客 from pandas import Series,DataFrame import pandas as pd import numpy as np ...

  3. pandas的数据结构之series

    Pandas的数据结构 1.Series Series是一种类似于一维数组的对象,由下面两个部分组成: index:相关的数据索引标签 values:一组数据(ndarray类型) series的创建 ...

  4. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  5. Pandas的使用(3)---Pandas的数据结构

    Pandas的使用(3) Pandas的数据结构 1.Series 2.DataFrame

  6. Pandas之数据结构

    pandas入门 由于最近公司要求做数据分析,pandas每天必用,只能先跳过numpy的学习,先学习大Pandas库 Pandas是基于Numpy构建的,让以Numpy为中心的应用变得更加简单 pa ...

  7. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  8. pandas知识点脑图汇总

    参考文献: [1]Pandas知识点脑图汇总

  9. pandas中数据结构-Series

    pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...

随机推荐

  1. settings.xml样例文件

    localRepository G:\program-my\maven-responsery true --> false --> com.your.plugins --> prox ...

  2. 基于nginx的FastCGI的缓存配置

    废话不多说了, 直接上配置, 其实 fastcgi_cache 和 proxy_cache 的配置基本一样: # !缓存文件存放目录 # levels 缓存层次 # keys_zone 缓存空间名和共 ...

  3. c# 类成员的定义 定义方法、字段和属性【转】

    c# 类成员的定义 定义方法.字段和属性c#类的成员包括字段.属性和方法.所有成员都有自己的访问级别,用下面的关键字之一来定义:public----成员可以有任何代码访问:private----成员只 ...

  4. flask --db-Column属性

    db.Column 中其余的参数指定属性的配置选项. 选项名 说 明 primary_key 如果设为 True,这列就是表的主键 unique 如果设为 True,这列不允许出现重复的值 index ...

  5. python协程与异步协程

    在前面几个博客中我们一一对应解决了消费者消费的速度跟不上生产者,浪费我们大量的时间去等待的问题,在这里,针对业务逻辑比较耗时间的问题,我们还有除了多进程之外更优的解决方式,那就是协程和异步协程.在引入 ...

  6. String在方法中的传递方式(调用外部方法给String变量赋值时,未得到预期结果)

    示例: public class StringTraining { public static void changeStr(String str){ str = "137878" ...

  7. a标签嵌套a标签效果的两种解决方案

    <!-- a标签进行嵌套的时候 --> <a href="#outer">outerA <a href="#inner">i ...

  8. JS 获取 今日、昨日、本周、本月、本季度、本年、上月、上周、上季度、去年

    /** * 日期范围工具类 */ var dateRangeUtil = (function () { /*** * 获得当前时间 */ this.getCurrentDate = function ...

  9. mui的ajax例子3

    mui.get() 前端页面: <!DOCTYPE html><html><head> <meta charset="utf-8"> ...

  10. cocos2d-x 学习资料汇总

    cocos2d-x配置问题 - 我要飞的更高 - 博客频道 - CSDN.NET Cocos2d-x win7 + vs2010 配置图文详解(亲测) - 子龙山人 - 博客园 WINDONWS7+V ...