题意:

$\sum\limits_{\begin{array}{*{20}{c}}
{a < = x < = b}\\
{c < = y < = d}
\end{array}} {\gcd (x,y) = = k} $

解题关键:

现令$f(i)$表示有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$,$1 <  = x <  = n,1 <  = y <  = m$

$F(d)$为有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$的倍数

$f(d) = \sum\limits_{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}} {\gcd (x,y) = = d} $

$\begin{array}{l}
F(d) = \frac{n}{d} * \frac{m}{d}\\
\begin{array}{*{20}{l}}
{F(d) = \sum\limits_{d|x} {f(x)} \Rightarrow }\\
{f(d) = \sum\limits_{d|x} {u(\frac{x}{d})F(x)} = \sum\limits_{d|x} {u(\frac{x}{d})\left\lfloor {\frac{n}{x}} \right\rfloor } \left\lfloor {\frac{m}{x}} \right\rfloor }
\end{array}\\
= \sum\limits_{d|x}^{\min (n,m)} {u(\frac{x}{d})} \left\lfloor {\frac{n}{x}} \right\rfloor \left\lfloor {\frac{m}{x}} \right\rfloor
\end{array}$

再根据二维前缀和的型,$ans = g(b,d,k) + g(a - 1,c - 1,k) - g(a - 1,d,k) - g(b,c - 1,k)$

法二:稍微转化一下。

$\begin{array}{*{20}{l}}
{f(d) = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}}}\gcd (x,y) = = d}\\
{ = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}}}\gcd (\frac{x}{d},\frac{y}{d}) = = 1}\\
{\begin{array}{*{20}{l}}
{ = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = \frac{n}{d}}\\
{1 < = y < = \frac{m}{d}}
\end{array}}}\gcd (x,y) = = 1}\\
{ = \sum\limits_{i = 1}^{\min (\frac{n}{d},\frac{m}{d})} u (i)F(i)}
\end{array}}\\
{ = \sum\limits_{i = 1}^{\min (\frac{n}{d},\frac{m}{d})} u (i)\left\lfloor {\frac{n}{{di}}} \right\rfloor \left\lfloor {\frac{m}{{di}}} \right\rfloor }\\
{}
\end{array}$

预处理前缀和+分块,$n/i$这种类型的一般要考虑重复性,利用分块可以优化到根号的复杂度。

观察式子,会发现$\left\lfloor {\frac{n}{d}} \right\rfloor $最多有$2\sqrt n $个取值,同理,$\left\lfloor {\frac{m}{d}} \right\rfloor $最多有$2\sqrt m $个取值,枚举这$2(\sqrt n  + \sqrt m )$个取值,对莫比乌斯函数维护一个前缀和,可以在$O(\sqrt n )$内求出解。

n/(n/i)就是满足商为n/i的i的最大值

复杂度的详细证明:http://blog.csdn.net/outer_form/article/details/50590197

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//莫比乌斯函数线性筛法
const int maxn=+;
bool vis[maxn];
int prime[maxn],mu[maxn],sum1[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
for(int i=;i<n;i++){
sum1[i]=sum1[i-]+mu[i];
}
}
inline int read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
int x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
}
int fun(int n,int m,int k){
n/=k,m/=k;
if(n>m) swap(n,m);
int ans=,pos;
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=(sum1[pos]-sum1[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
int t,a,b,c,d,k;
init_mu();
t=read();
while(t--){
a=read(),b=read(),c=read(),d=read(),k=read();
int t1=fun(b,d,k),t2=fun(a-,c-,k),t3=fun(a-,d,k),t4=fun(b,c-,k);
int ans=t1+t2-t3-t4;
printf("%d\n",ans);
}
}

  

[bzoj2301]Problem b莫比乌斯反演+分块优化的更多相关文章

  1. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  2. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  3. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  4. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  7. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  8. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  9. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

随机推荐

  1. ASP.NET动态网站制作(3)--css(2)

    前言:css分为四次课讲完,第一节课内容见ASP.NET动态网站制作(2)--css(1),接下来的内容会涉及到定位.浮动.盒子模型(第二次课).css的具体应用(第三次课).css3(第四次课).今 ...

  2. 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥

    [BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...

  3. 九度OJ 1015:还是A+B (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6773 解决:4031 题目描述: 读入两个小于10000的正整数A和B,计算A+B.需要注意的是:如果A和B的末尾K(不超过8)位数字相同 ...

  4. 流畅的python学习笔记第八章:深拷贝,浅拷贝,可变参数

    首先来看赋值,浅拷贝,深拷贝. 一赋值: a=['word',2,3] b=a print id(a),id(b) print [id(x) for x in a] print [id(x) for ...

  5. ABAP upload file(*.txt *.csv *.xls)

    转自:http://blog.csdn.net/jy00873757/article/details/8534492 在SAP我们经常会用到*.txt, *.csv, *.xls三种文件格式 *.TX ...

  6. 剑指Offer:把数组排成最小的数【45】

    剑指Offer:把数组排成最小的数[45] 题目描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如,输入数组是{3.32.321},则打印出来的这3 ...

  7. hihocoder 在线测试 补提交卡 (Google)

    题目1 : 补提交卡 时间限制:2000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho给自己定了一个宏伟的目标:连续100天每天坚持在hihoCoder上提交一个程序.100天过去 ...

  8. java 基础 - 反转字符串

    反转字符串 public class Main { public static void main(String[] args) { String newStr= strReverseWithArra ...

  9. ThreadPoolExecutor线程池进阶使用

    一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...

  10. physoft.net网站暂停 www.physoft.cn 正式开通 (菲烁科技, physoft)

    physoft.net原本计划以开源代码为主体,由于各种原因代码未能开源.基于这些代码,physoft成立了 菲烁(重庆)科技有限公司 ( www.physoft.cn) ,专注于工业级双目视觉测量, ...