本文由cmd markdown编辑,原始链接:https://www.zybuluo.com/jewes/note/35032

RDD是什么?

RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD。从编程的角度来看,RDD可以简单看成是一个数组。和普通数组
的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理。因此,Spark应用程序所做的无非是把需要
处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果。本文为第一部分,将介绍Spark
RDD中与Map和Reduce相关的API中。

如何创建RDD?

RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来。

举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们分别在3个分区中。

scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:12

举例:读取文件README.md来创建RDD,文件中的每一行就是RDD中的一个元素

scala> val b = sc.textFile("README.md")
b: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console>:12

虽然还有别的方式可以创建RDD,但在本文中我们主要使用上述两种方式来创建RDD以说明RDD的API。

map

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

举例:

scala> val a = sc.parallelize(1 to 9, 3)
scala> val b = a.map(x => x*2)
scala> a.collect
res10: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> b.collect
res11: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18)

上述例子中把原RDD中每个元素都乘以2来产生一个新的RDD。

mapPartitions

mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。
它的函数定义为:

def mapPartitions[U: ClassTag](f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]

f即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。最终的RDD由所有分区经过输入函数处理后的结果合并起来的。

举例:

scala> val a = sc.parallelize(1 to 9, 3)
scala> def myfunc[T](iter: Iterator[T]) : Iterator[(T, T)] = {
var res = List[(T, T)]()
var pre = iter.next while (iter.hasNext) {
val cur = iter.next;
res .::= (pre, cur) pre = cur;
}
res.iterator
}
scala> a.mapPartitions(myfunc).collect
res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))

上述例子中的函数myfunc是把分区中一个元素和它的下一个元素组成一个Tuple。因为分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。
mapPartitions还有些变种,比如mapPartitionsWithContext,它能把处理过程中的一些状态信息传递给用户指定的输入函数。还有mapPartitionsWithIndex,它能把分区的index传递给用户指定的输入函数。

mapValues

mapValues顾名思义就是输入函数应用于RDD中Kev-Value的Value,原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。

举例:

scala> val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
scala> val b = a.map(x => (x.length, x))
scala> b.mapValues("x" + _ + "x").collect
res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx),(3,xcatx), (7,xpantherx), (5,xeaglex))

mapWith

mapWith是map的另外一个变种,map只需要一个输入函数,而mapWith有两个输入函数。它的定义如下:

def mapWith[A: ClassTag, U: ](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => U): RDD[U]
  • 第一个函数constructA是把RDD的partition index(index从0开始)作为输入,输出为新类型A;
  • 第二个函数f是把二元组(T, A)作为输入(其中T为原RDD中的元素,A为第一个函数的输出),输出类型为U。

举例:把partition index 乘以10,然后加上2作为新的RDD的元素。

val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)
x.mapWith(a => a * 10)((a, b) => (b + 2)).collect
res4: Array[Int] = Array(2, 2, 2, 12, 12, 12, 22, 22, 22, 22)

flatMap

与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。
举例:对原RDD中的每个元素x产生y个元素(从1到y,y为元素x的值)

scala> val a = sc.parallelize(1 to 4, 2)
scala> val b = a.flatMap(x => 1 to x)
scala> b.collect
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4)

flatMapWith

flatMapWith与mapWith很类似,都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A;另外一个函数是以二元组(T,A)作为输入,输出为一个序列,这些序列里面的元素组成了新的RDD。它的定义如下:

def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]

举例:

scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,
8, 2, 9)

flatMapValues

flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。

举例

scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> val b = a.flatMapValues(x=>x.to(5))
scala> b.collect
res3: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (3,4), (3,5))

上述例子中原RDD中每个元素的值被转换为一个序列(从其当前值到5),比如第一个KV对(1,2), 其值2被转换为2,3,4,5。然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。

reduce

reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

举例

scala> val c = sc.parallelize(1 to 10)
scala> c.reduce((x, y) => x + y)
res4: Int = 55

上述例子对RDD中的元素求和。

reduceByKey

顾名思义,reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行reduce,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

举例:

scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> a.reduceByKey((x,y) => x + y).collect
res7: Array[(Int, Int)] = Array((1,2), (3,10))

上述例子中,对Key相同的元素的值求和,因此Key为3的两个元素被转为了(3,10)。

Reference

本文中的部分例子来自:http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

spark简单入门的更多相关文章

  1. Spark快速入门 - Spark 1.6.0

    Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首 ...

  2. Spark快速入门

    Spark 快速入门   本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...

  3. Spark高速入门指南(Quick Start Spark)

    版权声明:本博客已经不再更新.请移步到Hadoop技术博客:https://www.iteblog.com https://blog.csdn.net/w397090770/article/detai ...

  4. [转] Spark快速入门指南 – Spark安装与基础使用

    [From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月 ...

  5. 大数据学习day18----第三阶段spark01--------0.前言(分布式运算框架的核心思想,MR与Spark的比较,spark可以怎么运行,spark提交到spark集群的方式)1. spark(standalone模式)的安装 2. Spark各个角色的功能 3.SparkShell的使用,spark编程入门(wordcount案例)

    0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而 ...

  6. 用IntelliJ IDEA创建Gradle项目简单入门

    Gradle和Maven一样,是Java用得最多的构建工具之一,在Maven之前,解决jar包引用的问题真是令人抓狂,有了Maven后日子就好过起来了,而现在又有了Gradle,Maven有的功能它都 ...

  7. [原创]MYSQL的简单入门

    MYSQL简单入门: 查询库名称:show databases; information_schema mysql test 2:创建库 create database 库名 DEFAULT CHAR ...

  8. Apache Spark简单介绍、安装及使用

    Apache Spark简介 Apache Spark是一个高速的通用型计算引擎,用来实现分布式的大规模数据的处理任务. 分布式的处理方式可以使以前单台计算机面对大规模数据时处理不了的情况成为可能. ...

  9. Okio 1.9简单入门

    Okio 1.9简单入门 Okio库是由square公司开发的,补充了java.io和java.nio的不足,更加方便,快速的访问.存储和处理你的数据.而OkHttp的底层也使用该库作为支持. 该库极 ...

随机推荐

  1. 1.22-1.24 Oozie企业使用案例

    一.将hive的表数据用sqoop抽取到mysql 1.编写oozie workflow和Coordinator ## [root@hadoop-senior oozie-apps]# pwd /op ...

  2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">详解

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. shell编程流程控制

    前言: 在linux shell中,通常我们将一些命令写在一个文件中就算是一个shell脚本了,但是如果需要执行更为复杂的逻辑判断,我们就需要使用流程控制语句来支持了. 所谓流程控制既是通过使用流程控 ...

  4. PYTHON3中 类的继承

    继承 1:什么是继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,也就是说在python中支持一个儿子继承多个爹. 新建的类成为子类或者派生类. 父类又可以成为基类或者 ...

  5. SQL Server知识详解

    1.SET NOCOUNT ON的作用: 作用:阻止在结果集中返回显示受T-SQL语句或则usp影响的行计数信息. 语法:SET NOCOUNT {ON | OFF} 详解:当SET ONCOUNT ...

  6. 分解gif图片并保存

    /** Gif的步骤 1. 拿到Gifd的数据 2. 将Gif分解为一帧帧 3. 将单帧数据转为UIImage 4. 单帧图片保存 */ #import <ImageIO/ImageIO.h&g ...

  7. 两个MATLAB在线工具,画图啥的都不用安装了

    1. matlab网页版 http://octave-online.net/ http://www.compileonline.com/execute_matlab_online.php   2. 函 ...

  8. HTTPS为什么更安全,请看这里

    本文转载于https://foofish.net/https-story-1.html HTTPS 是建立在密码学基础之上的一种安全通信协议,严格来说是基于 HTTP 协议和 SSL/TLS 的组合. ...

  9. Ubuntu终端查看系统时间,以及日历

    时间:  date 日历: cal https://blog.csdn.net/zhengchaooo/article/details/79500032 修改时区以及时间 查看时区 date -R 修 ...

  10. bzoj1142:[POI2009]Tab

    传送门 考虑每次交换都不会改变每个数所在的行和列(不是指编号,而是指和它在同一行或者同一列的数不会发生变化) 由于每个数互不相同,所以记录下每个数所在的行和列,暴力判断就好了 代码: #include ...