https://www.lydsy.com/JudgeOnline/problem.php?id=3238

https://www.luogu.org/problemnew/show/P4248

参考:https://blog.csdn.net/Vmurder/article/details/42721101

第一道接触后缀树的题,然而不想讲这个东西。

我们只需要知道将串倒着建后缀自动机parent树就是后缀树即可。

然后两个后缀的lcp就是他们的lca的len。

设点u,则过点u的后缀就有su子树的size和个,所以能配出size[u]*(size[u]-1)/2个对,这条路径的长度贡献为(tr[u].l-tr[f].l)

PS:贡献不是tr[u].l,因为过u的后缀最长的不一定为tr[u].l,所以要一段一段处理。

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long ll;
const int N=1e6+;
struct tree{
int a[],fa,l;
}tr[N];
struct node{
int to,nxt;
}e[N];
char s[N];
int last,cnt,tot,size[N],head[N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
inline void insert(int c){
int p=last,np=++tot;
last=np;tr[np].l=tr[p].l+;
for(;p&&!tr[p].a[c];p=tr[p].fa)tr[p].a[c]=np;
if(!p)tr[np].fa=;
else{
int q=tr[p].a[c];
if(tr[p].l+==tr[q].l)tr[np].fa=q;
else{
int nq=++tot;tr[nq].l=tr[p].l+;
memcpy(tr[nq].a,tr[q].a,sizeof(tr[q].a));
tr[nq].fa=tr[q].fa;tr[q].fa=tr[np].fa=nq;
for(;p&&tr[p].a[c]==q;p=tr[p].fa)tr[p].a[c]=nq;
}
}
size[np]=;
}
ll ans=;
void dfs(int u,int f){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
dfs(v,u);
size[u]+=size[v];
}
ans-=(ll)size[u]*(size[u]-)*(tr[u].l-tr[f].l);
}
int main(){
cin>>s+;
int n=strlen(s+);
last=tot=;
for(int i=n;i>=;i--)insert(s[i]-'a');
for(int i=;i<=tot;i++)add(tr[i].fa,i);
ans=(ll)(n-)*n*(n+)>>;
dfs(,);
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3238:[AHOI2013]差异——题解的更多相关文章

  1. BZOJ3238 [Ahoi2013]差异 【SAM or SA】

    BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...

  2. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  4. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  5. BZOJ3238 [Ahoi2013]差异 SA+单调栈

    题面 戳这里 题解 考虑把要求的那个东西拆开算,前面一个东西像想怎么算怎么算,后面那个东西在建出\(height\)数组后相当于是求所有区间\(min\)的和*2,单调栈维护一波即可. #includ ...

  6. 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】

    可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...

  7. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  8. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  9. BZOJ3238: [Ahoi2013]差异 (后缀自动机)

    Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...

随机推荐

  1. AFD运维

    1.afd 网址:https://www.dwd.de/AFD/html-en/contents.html 2.问题:拷贝了一个主机A配置后(HOST_CONFIG主机项),修改为另一个主机B配置:然 ...

  2. jenkins通过maven指定testng的xml文件,并给testng代码传参

    1.jenkins设置参数化构建,设置要传的参数名和值 2.指定testng的xml文件,在jenkins的输入以下 3.在pom.xml文件分别引用jenkins的参数,设置两个property & ...

  3. 关于Python的多重排序

    Python预置的list.sort().sorted()方法可实现各种数组的排序,但支持的只限于一个key,如果要多重排序,目前所知的方法只有自定义了. Help on built-in funct ...

  4. 制作一个App的完整流程是哪些

    APP开发流程其实并不复杂,但是对于客户来说,.一般移动APP开发都离不开UI设计师.前端开发.后端开发.测试专员.产品经理等,由于他们的工作性质都不一样,我们且先把APP软件开发项目分为三个阶段: ...

  5. 油田 (Oil Deposits UVA - 572)

    题目描述: 原题:https://vjudge.net/problem/UVA-572 题目思路: 1.图的DFS遍历 2.二重循环找到相邻的八个格子 AC代码: #include <iostr ...

  6. CSP201703-1:分蛋糕

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  7. Java中定时器相关实现的介绍与对比之:Timer和TimerTask

    Timer和TimerTask JDK自带,具体的定时任务由TimerTask指定,定时任务的执行调度由Timer设定.Timer和TimerTask均在包java.util里实现. 本文基于java ...

  8. Sharepoint 2013与Sharepoint 2016的功能对比

    开发人员功能 SharePoint Foundation 2013 SharePoint Server 2013 Standard CAL SharePoint Server 2013 Enterpr ...

  9. java面试整理

    IO和NIO的区别 这是一个很常见的问题,如果单纯的只回答IO和NIO的区别,只能算及格.我个人觉得应该从以下几个方面回答: 1).IO简介, 2).TCP的三次握手,因为这也是两者的区别之一, 3) ...

  10. jQuery实现仿京东商城图片放大镜

    效果图: 不废话直接上代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...