[BZOJ5303] [HAOI2018] 反色游戏
题目链接
LOJ:https://loj.ac/problem/2524
BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303
洛谷:https://www.luogu.org/problemnew/show/P4494
Solution
精神污染
假设所有点都是连通的,很显然如果黑点个数为奇数个则无解,否则可以证明一定有解。
那么随便整出一棵生成树,然后反色一些边使其合法,显然一棵树只有一种情况。
考虑非树边的贡献,如果非树边不反色显然无影响,否则可以把这条边两个端点连成的链上所有边都反色,那么可以发现当前方案还是合法的。
那么每条非树边都可选可不选,总方案数就是\(2^{m-n+1}\)。
注意到原图不一定联通,考虑每个联通块,方案数相乘,可以得到总方案数为\(2^{m-n+p}\),其中\(p\)为联通块个数。
注意每个联通块都必须合法,否则无解。
对于删点,我们分情况讨论:
- 如果当前点是孤立的,对答案无影响。
- 当前点不是割点,那么对答案影响无非就是点数少\(1\),边数少了点,直接算就好了。
- 对于割点,我们需要判割完之后剩下的联通块合不合法,答案也差不多。
这题最难写的地方就是判无解....不过据说建圆方树好写点?
细节很多...
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar(' ');}
#define lf double
#define ll long long
const int maxn = 2e5+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7;
char s[maxn];
int n,m,head[maxn],tot,dfn[maxn],dfn_cnt,low[maxn],bo[maxn],cnt[maxn],rt,c[maxn],is[maxn],bel[maxn],deg[maxn],sz[maxn],pw[maxn],siz[maxn];
struct edge{int to,nxt;}e[maxn<<1];
void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot,deg[v]++;}
void ins(int u,int v) {add(u,v),add(v,u);}
void tarjan(int x,int fa) {
dfn[x]=low[x]=++dfn_cnt,bel[x]=rt,bo[x]=1,siz[x]=sz[x];int flag=0;
for(int v,i=head[x];i;i=e[i].nxt) {
if((v=e[i].to)==fa) continue;flag++;
if(!dfn[v]) tarjan(v,x),low[x]=min(low[x],low[v]),sz[x]+=sz[v];
else {low[x]=min(low[x],dfn[v]);continue;}
if(low[v]>=dfn[x]) bo[x]&=!(sz[v]&1),cnt[x]++,is[x]=1,siz[x]+=sz[v];
}
if(fa) cnt[x]++;if(!flag) is[x]=1;
}
void solve() {
read(n),read(m);
for(int i=1,x,y;i<=m;i++) read(x),read(y),ins(x,y);
scanf("%s",s+1);for(int i=1;i<=n;i++) sz[i]=c[i]=s[i]-'0';
pw[0]=1;for(int i=1;i<=m;i++) pw[i]=2ll*pw[i-1]%mod;
int p=0,odd=0;
for(int i=1;i<=n;i++)
if(!dfn[i]) rt=i,tarjan(i,0),p++,odd+=sz[i]&1;
for(int i=1;i<=n;i++) bo[i]&=!((sz[bel[i]]-siz[i])&1);
write(odd?0:pw[m-n+p]);
for(int i=1;i<=n;i++) {
if(!deg[i]) write(odd-sz[i]?0:pw[m-n+p]);
else if(!is[i]) write(odd-(sz[bel[i]]&1)+((sz[bel[i]]-c[i])&1)?0:pw[m-deg[i]-n+p+1]);
else write(bo[i]&&!(odd-(sz[bel[i]]&1))?pw[m-deg[i]-n+cnt[i]+p]:0);
}puts("");
}
#define clr(x) memset(x,0,4*(n+5))
void clear() {
clr(dfn),clr(low),clr(bel),clr(deg);
clr(sz),clr(bo),clr(is),clr(head),clr(cnt),clr(siz);
tot=0;
}
int main() {
int t;read(t);while(t--) solve(),clear();
return 0;
}
[BZOJ5303] [HAOI2018] 反色游戏的更多相关文章
- [BZOJ5303][HAOI2018]反色游戏(Tarjan)
暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...
- 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)
[BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...
- bzoj 5393 [HAOI2018] 反色游戏
bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...
- P4494 [HAOI2018]反色游戏
P4494 [HAOI2018]反色游戏 题意 给你一个无向图,图上每个点是黑色或者白色.你可以将一条边的两个端点颜色取反.问你有多少种方法每个边至多取反一次使得图上全变成白色的点. 思路 若任意一个 ...
- 【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)
题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边 ...
- [HAOI2018]反色游戏
[Luogu4494] [BZOJ5303] [LOJ2524] LOJ有数据就是好 原题解,主要是代码参考 对于每一个联通块(n个点),其他的边一开始随便选,只需要n-1条边就可以确定最终结果. 所 ...
- bzoj 5303: [Haoi2018]反色游戏
Description Solution 对于一个有偶数个黑点的连通块,只需要任意两两配对,并把配对点上的任一条路径取反,就可以变成全白了 如果存在奇数个黑点的连通块显然无解,判掉就可以了 如果有解, ...
- Luogu4494 [HAOI2018]反色游戏 【割顶】
首先发现对于一个联通块有奇数个黑点,那么总体来说答案无解.这个很容易想,因为对每个边进行操作会同时改变两个点的颜色,异或值不变. 然后一个朴素的想法是写出异或方程进行高斯消元. 可以发现高斯消元的过程 ...
- 洛谷P4494 [HAOI2018]反色游戏(tarjan)
题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然 ...
随机推荐
- Allure--自动化测试报告生成
之前尝试使用过testNG自带的测试报告.优化过reportNG的测试报告,对这两个报告都不能满意.后经查找资料,发现有个神器: Allure(已经有allure2了,笔者使用的就是allure2), ...
- Linux命令应用大词典-第13章 用户和组群管理
13.1 useradd:创建用户账户 13.2 adduser:创建用户账户 13.3 lnewusers:创建用户账户 13.4 usermod:修改用户账户 13.5 userdel:删除用户账 ...
- mysql新手进阶03
当年忠贞为国酬,何曾怕断头? 如今天下红遍,江山靠谁守? 业未就,身躯倦,鬓已秋. 你我之辈,忍将夙愿,付与东流? 数据库结构如下: 仓库(仓库号, 城市, 面积) 订购单(职工号, 供应商号, 订购 ...
- TW实习日记:第17天
今天又改了一堆bug,比如界面的显示bug,Html字符串的处理.优化了一些交互界面,处理了一个模块数据传输的问题.我发现这些bug真的有一半是粗心导致的,真的真的是,写代码一定要细心细心再细心,不然 ...
- 在几份docx文档中里查找某个值
import docx, os def readDocx(fileName): doc = docx.Document(fileName) content = '\n'.join([para.text ...
- [转]bashrc与profile区别
作者:KornLee 2005-02-03 15:49:57 来自:Linux先生 /etc/profile:此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行.并从/etc/pro ...
- springMVC怎么改变form的提交方式为put或者delete
想着练习一下创建restful风格的网站呢,结果发现在jsp页面上并不能灵活使用put和delete提交方式.下面我的解决办法 一. form 只支持post和get两种提交方式,只支持get提交方式 ...
- CDH问题集
1.在CM中添加主机报JDK错误 手动在机器上安装oracle-jdk1.7+update64.然后在CM中选择不安装oracle-jdk即可. 2.HostMoinitor无法与server联系 查 ...
- hadoop问题集(2)
28. Sqoop: java.lang.NullPointerException sqoop import --connect jdbc:oracle:thin:@//xxxx:1521/aps ...
- allocator类
一.动态数组 [new的局限性] new将内存分配和对象构造组合在一起,同样delete将对象析构和内存释放组合在一起 我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起(我们知道对象应有什 ...