http://www.lydsy.com/JudgeOnline/problem.php?id=1492

(题目描述太长了不粘贴了……)

………………………………………………………

是自己做的

抄开心

……………………………………………………………

所以……emm,简单的dp就是:

f(i)=max(a[i]*x[j]+b[i]*y[j])

其中x和y表示在第i 天,用最多的钱能够换成的A券和B券。

完后……这怎么斜率优化啊……如果把x和y看做点来斜率优化的话它们也没有单调性啊。

推荐一个博客,可以在这里看推导式子(其实是我懒):http://blog.csdn.net/lych_cys/article/details/50674962

平衡树固然可以解决问题,但是CDQ分治在这种问题上显得更加睿智。

我们完全可以对其变成一维排a/b,二维CDQ一下它们出现时间t,三维求f。把每个点看做询问和添加操作即可。

剩下的就是单调队列基础操作了。

(题解瞎编完了hhh)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const int N=1e5+;
struct node{
dl x,y;
inline bool operator <(const node &b)const{
return x<b.x||x==b.x&&y<b.y;
}
}p[N],que[N];
int n,t[N],tmp[N];
dl f[N],a[N],b[N],rate[N],ans;
inline bool cmp(int x,int y){
return a[x]*b[y]<a[y]*b[x];
}
inline bool slope(node k,node j,node i){
return (j.x-i.x)*(k.y-i.y)-(j.y-i.y)*(k.x-i.x)<=;
}
inline dl suan(node j,int i){
return j.x*a[i]+j.y*b[i];
}
void cdq(int l,int r){
if(l==r){
f[l]=max(f[l],f[l-]);
ans=max(ans,f[l]);
p[l].y=f[l]/(a[l]*rate[l]+b[l]);
p[l].x=p[l].y*rate[l];
return;
}
int mid=(l+r)>>,idx1=l,idx2=mid+,ql=,qr=;
for(int i=l;i<=r;i++){
if(t[i]<=mid)tmp[idx1++]=t[i];
else tmp[idx2++]=t[i];
}
for(int i=l;i<=r;i++)t[i]=tmp[i];
cdq(l,mid);
for(int i=l;i<=mid;i++){
while(qr>&&slope(que[qr-],que[qr],p[i]))qr--;
que[++qr]=p[i];
}
for(int i=mid+;i<=r;i++){
int j=t[i];
while(ql<qr&&suan(que[ql],j)<=suan(que[ql+],j))ql++;
f[j]=max(f[j],suan(que[ql],j));
}
cdq(mid+,r);
if(l==&&r==n)return;
ql=l,idx1=l,idx2=mid+;
while(ql<=r){
if(idx2>r||idx1<=mid&&p[idx1]<p[idx2])que[ql++]=p[idx1++];
else que[ql++]=p[idx2++];
}
for(int i=l;i<=r;i++)p[i]=que[i];
return;
}
int main(){
scanf("%d%lf",&n,&f[]);
for(int i=;i<=n;i++){
scanf("%lf%lf%lf",&a[i],&b[i],&rate[i]);
t[i]=i;
}
sort(t+,t+n+,cmp);
cdq(,n);
printf("%.3lf\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1492:[NOI2007]货币兑换——题解的更多相关文章

  1. [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)

    [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...

  2. [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5838  Solved: 2345[Submit][Sta ...

  3. BZOJ1492: [NOI2007]货币兑换Cash 【dp + CDQ分治】

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 5391  Solved: 2181 [Submit][S ...

  4. bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5541  Solved: 2228[Submit][Sta ...

  5. bzoj千题计划237:bzoj1492: [NOI2007]货币兑换Cash

    http://www.lydsy.com/JudgeOnline/problem.php?id=1492 dp[i] 表示 第i天卖完的最大收益 朴素的dp: 枚举从哪一天买来的在第i天卖掉,或者是不 ...

  6. [BZOJ1492] [NOI2007]货币兑换Cash 斜率优化+cdq/平衡树维护凸包

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5907  Solved: 2377[Submit][Sta ...

  7. BZOJ1492 [NOI2007]货币兑换

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  8. BZOJ1492: [NOI2007]货币兑换Cash

    设$x_j$,$y_j$为第$j$天能买的A,B券数量,$f_i$为第$i$天的最大收益.$f_i=\max_{1\le j<i}a_ix_j+b_iy_j$,最大化$f_i$即找一个点$(x_ ...

  9. Bzoj1492: [NOI2007]货币兑换Cash(不单调的斜率优化)

    题面 传送门 Sol 题目都说了 必然存在一种最优的买卖方案满足: 每次买进操作使用完所有的人民币: 每次卖出操作卖出所有的金券. 设\(f[i]\)表示第\(i\)天可以有的最大钱数 枚举\(j&l ...

随机推荐

  1. zipaligin的使用介绍

    近来一直在做APK反编译和重编译的工作,针对一些apk需要放入一些相应的文件,(当然这里不涉及非法盈利,都是有合约的),在对一些包打包以后,发现可以通过一个叫做zipalign的工具进行优化,对于这个 ...

  2. HTML随笔3

    1. *svg(可伸缩矢量图)标签画圆,其中r表示半径,cx和cy表示其圆心的坐标 <svg><circle r="100" cx="200" ...

  3. windows环境下jmeter生成测试报告

    1.要求 jmeter需要在3.0版本以上 jdk1.7以上 需要准备脚本文件,即jmx文件 2.进入cmd界面 3.进入jmeter的bin目录 cd:\xxxx\apache-jmeter-4.0 ...

  4. 第一章 了解TCP/IP协议族

    第一章 了解TCP/IP协议族 1.1 TCP/IP协议族体系结构以及主要协议 IP和TCP协议对编写程序具有最直接的影响,后面的章节会详细的讲到. TCP/IP的体系结构有应用层,传输层,网络层,数 ...

  5. Unity编辑器 - 编辑器控制特效播放

    编辑器控制特效播放 Unity的动画编辑器不能预览粒子系统的播放,为了方便预览特效,设想制作一个预览特效的工具,通常一个特效有三种组件: - Animation - Animator - Partic ...

  6. 【WXS全局对象】Date

    属性: 名称 说明 Date.parse( [dateString] ) 解析一个日期时间字符串,并返回 1970/1/1 午夜距离该日期时间的毫秒数. Date.UTC(year,month,day ...

  7. ajax 个人理解 学习笔记

    W:Ajax Q:异步网络请求.无刷新请求数据. W:ajax的实现流程如下: Q: 创建XHR对象 调用open()方法,创建请求 调用send()方法,发送请求 捕获请求状态,判断请求结果 获取数 ...

  8. PHP计算两个已知经纬度之间的距离

    /** *求两个已知经纬度之间的距离,单位为千米 *@param lng1,lng2 经度 *@param lat1,lat2 纬度 *@return float 距离,单位千米 **/ privat ...

  9. mahout协同过滤算法各接口

    Mahout协同过滤算法 Mahout使用了Taste来提高协同过滤算法的实现,它是一个基于Java实现的可扩展的,高效的推荐引擎.Taste既实现了最基本的基于用户的和基于内容的推荐算法,同时也提供 ...

  10. hibernate 异常a different object with the same identifier value was already associated with the session

    在使用hibernate的时候发现了一个问题,记录一下解决方案. 前提开启了事务和事务间并无commit,进行两次save,第二次的时候爆出下面的异常a different object with t ...