http://www.lydsy.com/JudgeOnline/problem.php?id=3404

写挫好几次。。。。

裸的博弈论即可。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005;
bool f[N], vis[N];
bool dfs(int x) {
if(vis[x]) return f[x];
if(x==0) return 0;
vis[x]=1;
int t=x, mx=0, mn=10;
while(t) {
int k=t%10;
t/=10;
if(k) mx=max(mx, k), mn=min(mn, k);
}
if(!dfs(x-mn)) return f[x]=1;
if(!dfs(x-mx)) return f[x]=1;
return f[x]=0;
}
int main() {
int n=getint();
while(n--) {
int ans=dfs(getint());
ans?puts("YES"):puts("NO");
}
return 0;
}

Description

    贝茜和约翰在玩一个数字游戏.贝茜需要你帮助她.
    游戏一共进行了G(1≤G≤100)场.第i场游戏开始于一个正整数Ni(l≤Ni≤1,000,000).游
戏规则是这样的:双方轮流操作,将当前的数字减去一个数,这个数可以是当前 数字的最大数码,也可以是最小的非0数码.比如当前的数是3014,操作者可以减去1变成3013,也可以减去4变成3010.若干次操作之后,这个数字 会变成0.这时候不能再操作的一方为输家.    贝茜总是先开始操作.如果贝茜和约翰都足够聪明,执行最好的策略.请你计算最后的赢家.
    比如,一场游戏开始于13.贝茜将13减去3变成10.约翰只能将10减去1变成9.贝茜再将9减去9变成0.最后贝茜赢.

Input

    第1行输入一个整数G,之后G行一行输入一个Ni.

Output

 
    对于每一场游戏,若贝茜能赢,则输出一行“YES”,否则输幽一行“NO”

Sample Input

2
9
10

Sample Output

YES
NO

HINT

For the first game, Bessie simply takes the number 9 and wins.
For the second game, Bessie must take 1 (since she cannot take 0), and then
FJ can win by taking 9.

Source

【BZOJ】3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)的更多相关文章

  1. BZOJ 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)

    一开始被题意坑了= =,题目是说这个数字的最大和最小,不是个位的最大和最小= = 不知道怎么做只能递推了,必胜态就是存在能到达必败态的,必败态就是只能到达必胜态的 CODE: #include< ...

  2. 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 72  Solved ...

  3. BZOJ3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 47  Solved ...

  4. 【博弈论】【SG函数】bzoj3404 [Usaco2009 Open]Cow Digit Game又见数字游戏

    #include<cstring> #include<cstdio> #include<algorithm> #include<set> using n ...

  5. 【BZOJ】【3404】【USACO2009 Open】Cow Digit Game又见数字游戏

    博弈论 Orz ZYF 从前往后递推……反正最大才10^6,完全可以暴力预处理每个数的状态是必胜还是必败(反正才两个后继状态),然后O(1)查询……我是SB /******************** ...

  6. BZOJ1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5 ...

  7. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

  8. BZOJ 3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 动态规划

    3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=34 ...

  9. BZOJ 3400 [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队:dp【和为f的倍数】

    题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1375 题意: 给你n个数,你可以从中选任意多个,但不能不选.问你所选数字之和为f的倍数 ...

随机推荐

  1. chrome浏览器 提示Adobe Flash Player未安装的解决方法

    最近遇到了个flash player设置的一个问题,记录一下,可能不同浏览器版本和设置不一样 浏览器版本:版本 61.0.3163.100(正式版本) (64 位) 打开需要flash player的 ...

  2. Coursera-Algotithms学习

    Week1 Job Interview Question Social network connectivity. Given a social network containing N member ...

  3. 一个用于将sql脚本转换成实体类的js代码

    以前写过一段C#,苦于编译才能用.这样的小工具最好是用脚本语言来编写,易于执行,也易于修改. js 代码 convert.js ------------------------------------ ...

  4. 剑指OFFER之二叉搜索树与双向链表(九度OJ1503)

    题目描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 输入: 输入可能包含多个测试样例.对于每个测试案例,输入的第一行为一个数 ...

  5. how to remove untagged / none images

    docker rmi $(docker images -a| grep "^<none>" | awk '{print $"3"}')

  6. 修改select下拉框的下拉按钮

    ie上的下拉框下拉按钮真是太丑了,如何把他自定义一下呢? 首先,把浏览器自带的下拉框去掉:  select::-ms-expand { display: none; } 接下来,用自己喜欢的下拉图片去 ...

  7. 【转】H.264(H264)视频文件的制作

    转自:http://blog.csdn.net/caoshangpa/article/details/51166109 一.准备工作 1.下载并安装优酷客户端 2.下载ffmpeg可执行文件,解压可用 ...

  8. xpath的基础实例

    本文分为路径表达式和常用函数两部分,整理自火车浏览器官方教程-火车浏览器之Xpath讲解. 小提示:可以使用火狐浏览器.我用的是火狐浏览器+firebug+firepath来进行调试,调试界面是这样的 ...

  9. photoshop cs4 破解

    第一步:下载完软件,要先解压出来,有1.55G,解压. 第二步:安装时选试用30天的选项,先不要输入注册码,完成安装. 第三步:找到hosts文件,在C:\WINDOWS\system32\drive ...

  10. SSM整合开发流程

    我的spring是3.2,mybatis是3.4 1 引入user libarary,我的jar文件如下 //spring mvc core springMVC\spring-web-.RELEASE ...