Codeforces 980 E. The Number Games
\(>Codeforces \space 980 E. The Number Games<\)
题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) 你需要删掉 \(k\) 个点,使得删掉这些点后树依然联通,且剩下的点权之和最大,并输出方案
\(n , k \leq 10^6\)
解题思路 :
问题可以转化为选取 \(n - k\) 个点,使得选取的点联通且权值和最大
根据点权是 \(2^i\) 的性质,显然有选取编号为 \(x\) 的点比选取 \(i = [1, x)\) 之间的所有点还要优
首先 \(n\) 一定要保留,于是可以将 \(n\) 设置为 \(root\) 把无根树变成有根树来简化问题
接下来不妨贪心的从大到小保留点,因为点权都是 \(2^i\) 所以一个点如果能选取就必然会被选取
考虑如果要选取一个点必然要选取他的所有祖先,所以一个点能否被选取取决于其到 \(root\) 的
路径上没有被选取的点的个数
所以对于一个点 \(x\) 只需要倍增找到其到 \(root\) 路径上最深的已经被选取的点 \(y\)
那么路径上没有被选取的点的个数就是 \(dep_x - dep_y\),如果可以选取就暴力选取这些点
因为每个点只会被最多选取一次,所以复杂度得以保证,总复杂度是 \(O(nlogn)\)
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define N (1000005)
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
vector<int> g[N];
int f[N][24], dep[N], ff[N], n, k;
inline void dfs(int u, int fa){
dep[u] = dep[fa] + 1, f[u][0] = fa;
for(int i = 0; i < g[u].size(); i++){
int v = g[u][i];
if(v != fa) dfs(v, u);
}
}
inline int get(int x){
for(int i = 22; i >= 0; i--)
if(!ff[f[x][i]] && f[x][i]) x = f[x][i];
return x;
}
int main(){
read(n), read(k), k = n - k;
for(int i = 1, x, y; i < n; i++){
read(x), read(y);
g[x].push_back(y), g[y].push_back(x);
}
dfs(n, 0);
for(int j = 1; j <= 22; j++)
for(int i = 1; i <= n; i++)
f[i][j] = f[f[i][j-1]][j-1];
for(int i = n; i >= 1; i--) if(!ff[i]){
int u = i, ls = get(u);
if(dep[u] - dep[ls] + 1 <= k)
k -= dep[u] - dep[ls] + 1; else continue;
for(int s = u; s != ls; s = f[s][0]) ff[s] = 1;
ff[ls] = 1;
if(!k) break;
}
for(int i = 1; i <= n; i++)
if(!ff[i]) printf("%d ", i);
return 0;
}
Codeforces 980 E. The Number Games的更多相关文章
- [codeforces 325]B. Stadium and Games
[codeforces 325]B. Stadium and Games 试题描述 Daniel is organizing a football tournament. He has come up ...
- Codeforces 455B A Lot of Games(字典树+博弈)
题目连接: Codeforces 455B A Lot of Games 题目大意:给定n.表示字符串集合. 给定k,表示进行了k次游戏,然后是n个字符串.每局開始.字符串为空串,然后两人轮流在末尾追 ...
- CF980E The Number Games
CF980E The Number Games 给定一棵大小为 \(n\) 的树,第 \(i\) 个点的点权为 \(2^i\) ,删掉 \(k\) 个点及其连边,使得剩下的点组成一个连通块,且权值和最 ...
- CF980E The Number Games【树链剖分/线段树】
CF980E The Number Games 题意翻译 Panel 国将举办名为数字游戏的年度表演.每个省派出一名选手. 国家有 n 个编号从 1 到 n 的省,每个省刚好有一条路径将其与其他省相连 ...
- Codeforces 980E The Number Games 贪心 倍增表
原文链接https://www.cnblogs.com/zhouzhendong/p/9074226.html 题目传送门 - Codeforces 980E 题意 $\rm Codeforces$ ...
- Codeforces 980E The Number Games - 贪心 - 树状数组
题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...
- codeforces 980E The Number Games
题意: 给出一棵树,要求去掉k个点,使得剩下的还是一棵树,并且要求Σ(2^i)最大,i是剩下的节点的编号. 思路: 要使得剩下的点的2的幂的和最大,那么肯定要保住大的点,这是贪心. 考虑去掉哪些点的话 ...
- Codeforces Round #480 (Div. 2) E - The Number Games
题目大意:给你n个点的一棵树, 每个点的权值为2^i ,让你删掉k个点使得剩下的权值和最大. 思路:这题还是比较好想的, 我们反过来考虑, 剩下一个的情况肯定是选第n个点,剩下两个 我们肯定优先考虑第 ...
- The Number Games CodeForces - 980E (树, 贪心)
链接 大意: 给定$n$节点树, 求删除$k$个节点, 使得删除后还为树, 且剩余点$\sum{2^i}$尽量大 维护一个集合$S$, 每次尽量添加最大的点即可 这样的话需要支持求点到集合的最短距离, ...
随机推荐
- Hadoop和大数据:60款顶级开源工具(山东数漫江湖)
说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hado ...
- [Unity]在Shader中获取摄像机角度、视线的问题
又踩了一坑,好在谷歌到了之前的一个人遇到相同的问题,顺利解决. 先说说问题背景,我目前的毕设是体数据渲染,实现的办法是raycast.最基本的一点就是在fragment program里,获取rayc ...
- [2009国家集训队]小Z的袜子(hose)(BZOJ2038+莫队入门题)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目: 题意:中文题意,大家都懂. 思路:莫队入门题.不过由于要去概率,所以我们假 ...
- docker使用小记
查看当前镜像:docker images 运行一个简单的镜像:docker run hello-world 拉取一个远程docker:docker pull centos docker中安装nginx ...
- 【Windows使用笔记】使Onedrive同步任意文件夹
因为度盘实在是有点垃圾,经常看的剧之类的或者其他软件资源啥的动不动就被封. 所以跑去某宝买了一个5T的企业子账号,安全性不清楚,重要的隐私数据反正都用移动硬盘备份了.主要就是存一些资源性的文件吧.而且 ...
- 【EverydaySport】健身笔记——人体肌肉分解图
正面 背面 大肌肉群:胸.背.腿大肌肉群. 建议一周锻炼一次. 小肌肉群:肩.二头肌.三头肌.小臂.小腿.腹肌小肌肉群. 可以一周安排两次. 小腿.小臂肌群属于耐受肌群可以一周安排3次. 建议初学者就 ...
- Linux进程的创建函数fork()及其fork内核实现解析
进程的创建之fork() Linux系统下,进程可以调用fork函数来创建新的进程.调用进程为父进程,被创建的进程为子进程. fork函数的接口定义如下: #include <unistd.h& ...
- mac os x 把reids nignx mongodb做成随机启动吧
~/Library/LaunchAgents 由用户自己定义的任务项 /Library/LaunchAgents 由管理员为用户定义的任务项 /Library/LaunchDaemons 由管理员定义 ...
- HDU 5136 Yue Fei's Battle
题目链接:HDU-5136 网上的一篇题解非常好,所以就直接转载了.转自oilover的博客 代码: #include<cstring> #include<cstdio> #i ...
- C 实现有追求的线程池 后续
引言 -_- 还是老套路开局 很久以前写过一个有追求的线程池 -> C 实现有追求的线程池 探究 讲述的是一种思路, 并且实现了. 可以一用. 最近在详细搞simplec 框架. 准备发布个正式 ...