浅谈PCA
最近在回顾PCA方面的知识,发现对于之前的很多东西有了新的理解,下面和大家分享下我的一些个人的理解
1.我们为什么要用PCA,它能解决我什么问题?
PCA(Principal Component Analysis),主成成分分析,常用于高维数据的降维。在企业级环境中,最终用于模型训练的数据集往往维度很高,占用内存空间更大。PCA的出现,能保证尽量保留数据更完整信息的同时,将数据降低到更低的维度,这样不仅占用内存空间更小,模型训练速度也明显加快! (这里的模型训练的速度的加快是 降维之前训练所用的时间 对比 降维所用的时间 + 降维之后训练所用的时间 )
2.PCA的理论分析
PCA的目标:
2.1:将原始数据集通过降维的方式,在新的坐标系下表示,新的坐标系的维度远低于原始维度。
2.2:在新的坐标系下的表示应尽量保留相对完整的信息。
对于2.2我们知道,完整的信息指的是数据间的差异。例如我们在做模型训练的时候,往往希望训练数据的分布是涵盖了所有的情况一样。我们用方差来衡量数据间的离散程度,这也是新坐标下的衡量指标,我们要找到这样的一组坐标系,使得原始数据在新坐标系下的方差最大。同时我们考虑到,如果从高维降低到一维,上面的论述是没有问题的,如果降低到k维度(1<k<n),那么每次都去寻找使方差最大的那条坐标轴得到的结果是k条结果是重合的。得到的新的坐标轴应该是在已得到坐标轴的基础之上,对原有数据未展示的信息做补充(为了最大化展示原有信息),所以我们期望得到的一组坐标系之间的坐标轴是两两互不相关的。
3.准备工作
进行降维之前,让我们来做些准备工作。首先对数据进行0均值归一化,之后再做标准化处理。使得所有数据在同一量纲。
4.数学推导
上式中的μ为空间中的一个向量,x为经过特征工程处理过后的矩阵。第一个式子为我们的目标函数,第二个为最优解的约束,问题为在约束空间内求最优解的问题,用拉格朗日乘子来求解。
得到下面的结果:
其中我们使,为协方差矩阵。所以我们知道μ就是e的主特征向量。(关于特征向量和特征值的一些概念,可以参靠一些资料来复习下)
我们的原始问题在此刻即转变为求e矩阵的TOPk个特征值对应的k个特征向量的问题
5.选几个?
对应最终的特征向量,我们选取几个,最终数据降低到几维度,那么,我们要怎么选取?
假设上式为降维后对应的特征向量,那么根据特征值占比来选择最终保留的维度,即如果降低到1维 此时的特征值占比为(3/3+2+0.1),如果降低到二维度,此时的特征值占比为(3+2/3+2+0.1)
如果要求信息量保留95%,那么根据特征值占比与目标值做比较,达到要求即可。
6.代码的实现
上图代码是根据降低到最终的维度来做的,感兴趣的同学可以实现一下按照保留信息量来实现
主播水平有限,如果有错的地方,欢迎大家批评指正!
参考资料:吴恩达机器学习公开课
马同学高等数学公众号
浅谈PCA的更多相关文章
- [转]浅谈PCA的适用范围
线性代数主要讲矩阵,矩阵就是线性变换,也就是把直线变成直线的几何变换,包括过原点的旋转.镜射.伸缩.推移及其组合.特征向量是对一个线性变换很特殊的向量:只有他们在此变换下可保持方向不变,而对应的特征值 ...
- 浅谈 PCA与SVD
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
- 浅谈angular2+ionic2
浅谈angular2+ionic2 前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别. 1. 项目所用:angular2+ionic2 ...
- iOS开发之浅谈MVVM的架构设计与团队协作
今天写这篇博客是想达到抛砖引玉的作用,想与大家交流一下思想,相互学习,博文中有不足之处还望大家批评指正.本篇博客的内容沿袭以往博客的风格,也是以干货为主,偶尔扯扯咸蛋(哈哈~不好好工作又开始发表博客啦 ...
随机推荐
- 禁用Linux透明大页
Oracle 安装时官方建议关闭Linux的透明大页,防止内存延迟分配导致的性能问题 https://docs.oracle.com/cd/E11882_01/install.112/e47689/p ...
- IPC进程间通信---共享内存
共享内存 共享内存:共享内存就是分配一块能被其它进程访问的内存.每个共享内存段在内核中维护着一个内部结构shmid_ds, 该结构定义在头文件linux/shm.h中,其结构如下: struct sh ...
- 浅析MySQL主从复制技术(异步复制、同步复制、半同步复制)
Preface As we all know,there're three kinds of replication in MySQL nowadays.Such as,asynchr ...
- 如何让tomcat服务器运行在80端口,并且无需输入项目名即可访问项目()
这个问题最开始遇到的时候是半年前,自己买了个服务器玩,但是域名解析的时候出了问题,我查了查资料才知道腾讯云是默认解析到80端口,而且还改不了. 首先是修改tomcat运行端口号,默认是8080,但是我 ...
- 【tp5.1】通过PHPExcel实现导入excel表格
1.上github下载PHPExcel,链接:https://github.com/PHPOffice/PHPExcel 2.下载解压后,将Classes改名为PHPExcel如图 3.将文件夹复制到 ...
- laravel4.2 Redis 使用
laravel4.2 Redis 使用 配置文件,app/config/database.php 'redis' => array( 'cluster' => false, 'defaul ...
- Flink+Kafka整合的实例
Flink+Kafka整合实例 1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01. 2.我的pom.xml文件配置如下. <?xml version=&q ...
- hive新手学习随笔
一.回顾 1.hive基于Hadoop的(存储HDFS,计算MR) 2.sql on hadoop概念 ->简化开发的操作 ->提升 ...
- QP之QK原理
QK是一个很小的抢占式微内核调度程序,它专用用QP中. QK的思想源于SST,Miro Samek重写了自己前期编的SST(Super Simple Task)代码. QK循环查询AO队列的状态表QK ...
- Python学习 :装饰器
装饰器(函数) 装饰器作为一个函数,可以为其他函数在不修改原函数代码的前提下添加新的功能 装饰器的返回值是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权限校验等 ...