浅谈PCA
最近在回顾PCA方面的知识,发现对于之前的很多东西有了新的理解,下面和大家分享下我的一些个人的理解
1.我们为什么要用PCA,它能解决我什么问题?
PCA(Principal Component Analysis),主成成分分析,常用于高维数据的降维。在企业级环境中,最终用于模型训练的数据集往往维度很高,占用内存空间更大。PCA的出现,能保证尽量保留数据更完整信息的同时,将数据降低到更低的维度,这样不仅占用内存空间更小,模型训练速度也明显加快! (这里的模型训练的速度的加快是 降维之前训练所用的时间 对比 降维所用的时间 + 降维之后训练所用的时间 )
2.PCA的理论分析
PCA的目标:
2.1:将原始数据集通过降维的方式,在新的坐标系下表示,新的坐标系的维度远低于原始维度。
2.2:在新的坐标系下的表示应尽量保留相对完整的信息。
对于2.2我们知道,完整的信息指的是数据间的差异。例如我们在做模型训练的时候,往往希望训练数据的分布是涵盖了所有的情况一样。我们用方差来衡量数据间的离散程度,这也是新坐标下的衡量指标,我们要找到这样的一组坐标系,使得原始数据在新坐标系下的方差最大。同时我们考虑到,如果从高维降低到一维,上面的论述是没有问题的,如果降低到k维度(1<k<n),那么每次都去寻找使方差最大的那条坐标轴得到的结果是k条结果是重合的。得到的新的坐标轴应该是在已得到坐标轴的基础之上,对原有数据未展示的信息做补充(为了最大化展示原有信息),所以我们期望得到的一组坐标系之间的坐标轴是两两互不相关的。
3.准备工作
进行降维之前,让我们来做些准备工作。首先对数据进行0均值归一化,之后再做标准化处理。使得所有数据在同一量纲。
4.数学推导



上式中的μ为空间中的一个向量,x为经过特征工程处理过后的矩阵。第一个式子为我们的目标函数,第二个为最优解的约束,问题为在约束空间内求最优解的问题,用拉格朗日乘子来求解。
得到下面的结果:

其中我们使
,为协方差矩阵。所以我们知道μ就是e的主特征向量。(关于特征向量和特征值的一些概念,可以参靠一些资料来复习下)
我们的原始问题在此刻即转变为求e矩阵的TOPk个特征值对应的k个特征向量的问题
5.选几个?
对应最终的特征向量,我们选取几个,最终数据降低到几维度,那么,我们要怎么选取?

假设上式为降维后对应的特征向量,那么根据特征值占比来选择最终保留的维度,即如果降低到1维 此时的特征值占比为(3/3+2+0.1),如果降低到二维度,此时的特征值占比为(3+2/3+2+0.1)
如果要求信息量保留95%,那么根据特征值占比与目标值做比较,达到要求即可。
6.代码的实现

上图代码是根据降低到最终的维度来做的,感兴趣的同学可以实现一下按照保留信息量来实现
主播水平有限,如果有错的地方,欢迎大家批评指正!
参考资料:吴恩达机器学习公开课
马同学高等数学公众号
浅谈PCA的更多相关文章
- [转]浅谈PCA的适用范围
线性代数主要讲矩阵,矩阵就是线性变换,也就是把直线变成直线的几何变换,包括过原点的旋转.镜射.伸缩.推移及其组合.特征向量是对一个线性变换很特殊的向量:只有他们在此变换下可保持方向不变,而对应的特征值 ...
- 浅谈 PCA与SVD
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
- 浅谈angular2+ionic2
浅谈angular2+ionic2 前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别. 1. 项目所用:angular2+ionic2 ...
- iOS开发之浅谈MVVM的架构设计与团队协作
今天写这篇博客是想达到抛砖引玉的作用,想与大家交流一下思想,相互学习,博文中有不足之处还望大家批评指正.本篇博客的内容沿袭以往博客的风格,也是以干货为主,偶尔扯扯咸蛋(哈哈~不好好工作又开始发表博客啦 ...
随机推荐
- php开发微信图灵机器人
本着开源为原则,为这个世界更美好作出一份共享,我就给大家做个指路人,如果实用,记得给提供开源的朋友一些鼓励. 简单介绍一下实现思路,使用swoole扩展接管php运行,由于swoole只能在类UNIX ...
- js的垃圾回收机制
Js具有自动垃圾回收机制.垃圾收集器会按照固定的时间间隔周期性的执行. JS中最常见的垃圾回收方式是标记清除. 工作原理:是当变量进入环境时,将这个变量标记为“进入环境”.当变量离开环境时,则将其标记 ...
- mac Axure RP 8 授权码 以及汉化
Koshy wTADPqxn3KChzJxLmUr5jTTitCgsfRkftQQ1yIG9HmK83MYSm7GPxLREGn+Ii6xY 汉化包 汉化包链接 密码: upri 汉化步骤 以Win7 ...
- SSM整合时初始化出现异常
java.lang.NoClassDefFoundError: org/aspectj/weaver/reflect/ReflectionWorld$ReflectionWorldException ...
- vscode vue 项目保存运行lint进行代码修正
{ "editor.tabSize": 2, "files.associations": { "*.vue": "vue" ...
- mybatis报错:未找到参数导致绑定异常
问题: 在映射文件中使用parameterMap元素时出现以下异常: org.mybatis.spring.MyBatisSystemException: nested exception is or ...
- 学习/linux/list.h_双链表实现
linux-3.5/include/linux/list.h 使用只含指针域的双向循环链表进行链表的操作. 下面是我选取部分list.h中代码: #ifndef _LINUX_LIST_H #defi ...
- Python学习手册之字符类和元字符深入
在上一篇文章中,我们介绍了 Python 的正则表达式和元字符,现在我们介绍 Python 的字符类和对元字符进行深入讲解.查看上一篇文章请点击:https://www.cnblogs.com/dus ...
- Leecode刷题之旅-C语言/python-206反转链表
/* * @lc app=leetcode.cn id=206 lang=c * * [206] 反转链表 * * https://leetcode-cn.com/problems/reverse-l ...
- python note 001
.tilte() .upper() .lower() --- \n \t --- "apple"+" "+"pen" --- .strip( ...