K优解

Time Limit: 20 Sec  Memory Limit: 512 MB

Description

  给定n个行数,每行m个。在每行中选出一个数来,求出前 k 小的异或和。

Input

  第一行 3 个正整数 n,m,k。
  接下来 n 行,每行 m 个非负整数,第 i 行第 j 个为权值a[i][j]。

Output

  一行一个数表示答案。

Sample Input

  3 2 2
  11 21
  9 25
  17 19

Sample Output

  2

HINT

  n*m<=300000,k<=300000,保证m^n>=k,a[i][j]均不超过10^9

Solution

  先对于每个 i,将每行的 a[i][1]~a[i][m] 从小到大排序,再将按照其元素差值多关键字排序(共m-1个关键字)。

  那么我们知道,最小的方案肯定是所有行都取第一个。由于其有一些特殊,我们先抛开这个方案。
  我们知道,次小的方案是(2,1,1,1…),把这个状态加入堆,由较优方案扩展较劣方案,对于每一个状态,我们记录其扩展到第几行,以及取第几个元素

  在已经得到前 k 优的方案时,当前所有方案中还未扩展的最好的方案x(其最后扩展位置为 i),就是第 k+1 优

  从方案x,我们可以扩展出几个较劣解

    1、x 的第 i 个元素不取m:将 i 行取的元素增加1(扩展位置为 i

    2、i + 1 <= n:将 i+1 行取为2(扩展位置为 i+1

    3、x 的第 i 个元素取为2i + 1 <= n:将 i 行取为1,i+1 行取为2(扩展位置为 i+1

  由此,每个解都可由唯一的优于它的解扩展得来。

  用个维护一下,每次取出最小的即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int n, m, k;
vector <int> A[ONE];
int id[ONE];
s64 Ans; struct power
{
s64 val;
int pt, id;
bool operator <(power a) const
{
return a.val < val;
}
};
priority_queue <power> q; int cmp(int a, int b)
{
for(int i = ; i < m; i++)
{
if(A[a][i + ] - A[a][i] < A[b][i + ] - A[b][i]) return ;
if(A[a][i + ] - A[a][i] > A[b][i + ] - A[b][i]) return ;
}
return ;
} int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n = get(); m = get(); k = get();
for(int i = ; i <= n; i++)
{
A[i].push_back();
for(int j = ; j <= m; j++)
A[i].push_back(get());
sort(A[i].begin(), A[i].end());
id[i] = i;
} sort(id + , id + n + , cmp); s64 res = ;
for(int i = ; i <= n; i++) res += A[i][];
Ans = res; q.push((power){res - A[id[]][] + A[id[]][], , }); for(int i = ; i <= k; i++)
{
power u = q.top(); q.pop();
Ans ^= u.val; if(u.id + <= m)
q.push((power){u.val - A[id[u.pt]][u.id] + A[id[u.pt]][u.id + ], u.pt, u.id + });
if(u.pt + <= n && <= m)
q.push((power){u.val - A[id[u.pt + ]][] + A[id[u.pt + ]][], u.pt + , });
if(u.pt + <= n && u.id == )
q.push((power){u.val - A[id[u.pt]][] + A[id[u.pt]][] - A[id[u.pt + ]][] + A[id[u.pt + ]][], u.pt + , });
} printf("%lld", Ans);
}

【Foreign】K优解 [堆]的更多相关文章

  1. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

  2. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  3. 01背包之求第K优解——Bone Collector II

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 题目大意是,往背包里赛骨头,求第K优解,在普通01背包的基础上,增加一维空间,那么F[i,v,k]可以理解 ...

  4. hdu2639(背包求第k优解)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值 分析:dp[i][j][k]表 ...

  5. 关于01背包求第k优解

    引用:http://szy961124.blog.163.com/blog/static/132346674201092775320970/ 求次优解.第K优解 对于求次优解.第K优解类的问题,如果相 ...

  6. (01背包 第k优解) Bone Collector II(hdu 2639)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639       Problem Description The title of this problem i ...

  7. 背包的第k优解[动态规划]

    From easthong ☆背包的第k优解                 描述 Description     DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是 ...

  8. dp之01背包hdu2639(第k优解)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值.......(注意,不要 和它的第一题混 ...

  9. Bone Collector II---hdu2639(01背包求第k优解)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639求01背包的第k大解.合并两个有序序列 选取物品i,或不选.最终的结果,是我们能在O(1)的时间内 ...

随机推荐

  1. 第三章——供机器读取的数据(CSV与JSON)

    本书使用的文件.代码:https://github.com/huangtao36/data_wrangling 机器可读(machine readable)文件格式: 1.逗号分隔值(Comma-Se ...

  2. lintcode-191-乘积最大子序列

    191-乘积最大子序列 找出一个序列中乘积最大的连续子序列(至少包含一个数). 样例 比如, 序列 [2,3,-2,4] 中乘积最大的子序列为 [2,3] ,其乘积为6. 标签 子数组 领英 动态规划 ...

  3. 使用gdb查看栈帧的情况,有ebp

    0x7fffffffdb30:    0x00000000    0x00000000    0xf7ffe700    0x0000001a0x7fffffffdb40:    0xffffdc98 ...

  4. Maven 生命周期 和插件

    1.3 生命周期1.3.1 什么是生命周期? Maven生命周期就是为了对所有的构建过程进行抽象和统一.包括项目清理.初始化.编译.打包.测试.部署等几乎所有构建步骤. 生命周期可以理解为构建工程的步 ...

  5. get computer system mac info in javascript

    get computer system mac info in javascript Q: how to using js get computer system mac information? A ...

  6. Linux命令发送Http GET/POST请求

    Get请求 curl命令模拟Get请求: 1.使用curl命令: curl "http://www.baidu.com" 如果这里的URL指向的是一个文件或者一幅图都可以直接下载到 ...

  7. asp.net mvc4使用log4.net 日志功能

    对于网站来讲,不能把异常信息显示给用户,异常信息只能记录到日志,出了问题把日志文件发给开发人员,就能知道问题所在. 下面演示网站 出错后自动添加出错日志的实例 (1)新建一个WebApplicatio ...

  8. 【Python】Python中*args 和**kwargs的用法

    好久没有学习Python了,应为工作的需要,再次拾起python,唤起记忆. 当函数的参数不确定时,可以使用*args 和**kwargs,*args 没有key值,**kwargs有key值. 还是 ...

  9. Qt安装与入门

    一.Qt SDK1.2安装 准备QtSdk-offline-win-x86-v1_2_1.exe离线安装包. 安装QtSDK时注意不要有中文路径,空格以及特殊字符.可以自定义选择组件安装,也可以默认安 ...

  10. BZOJ2151 种树(贪心+堆+链表/wqs二分+动态规划)

    dp容易想到,但没法进一步优化了. 考虑贪心,每次选出价值最大的物品.但这显然是不对的因为会影响其他物品的选择. 于是考虑加上反悔操作.每次选出一个物品后,将其相邻两物品删除,再将原物品价值变为相邻两 ...