n(n<=40000)个村民排成一列,每个人不能排在自己父亲的前面,有些人的父亲不一定在。问有多少种方案。

父子关系组成一个森林,加一个虚拟根rt,转化成一棵树。

假设f[i]表示以i为根的子树的排列方案数。

f[i]=f[1]*f[2]*..f[k] /(sum[i]-1)!/sum[1]!*sum[2]!*..sum[k]!)

化简,对每一个i,sum[i]-1在分子出现一次,sum[i]在分母出现一次。

Ans = n!/(sum1*sum2*sum3*...*sumn)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int mod=((int)1e9)+,maxn=,N=;
int first[N],sum[N],fa[N];
LL jc[N],inv[N];
int rt,al;
struct node{int x,y,next;}a[N]; void ins(int x,int y)
{
a[++al].x=x;a[al].y=y;
a[al].next=first[x];first[x]=al;
} void dfs(int x)
{
sum[x]++;
for(int i=first[x];i;i=a[i].next)
{
dfs(a[i].y);
sum[x]+=sum[a[i].y];
}
} int main()
{
freopen("a.in","r",stdin); jc[]=;
for(int i=;i<=maxn;i++) jc[i]=(jc[i-]*i)%mod;
inv[]=;
for(int i=;i<=maxn;i++)
{
inv[i]=((LL)(mod-mod/i))*inv[mod%i]%mod;
} int T,n,m,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
rt=n+;
for(int i=;i<=n;i++) fa[i]=-;
al=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
fa[x]=y;
ins(y,x);
}
for(int i=;i<=n;i++)
if(fa[i]==-) fa[i]=rt,ins(rt,i);
memset(sum,,sizeof(sum));
dfs(rt);
LL ans=jc[sum[rt]-];
for(int i=;i<=n;i++)
{
ans=ans*inv[sum[i]]%mod;
}
printf("%lld\n",ans);
} return ;
}

#include<cstdio>#include<cstdlib>#include<cstring>#include<iostream>using namespace std;
typedef long long LL;const int mod=((int)1e9)+7,maxn=40000,N=40010;int first[N],sum[N],fa[N];LL jc[N],inv[N];int rt,al;struct node{int x,y,next;}a[N];
void ins(int x,int y){a[++al].x=x;a[al].y=y;a[al].next=first[x];first[x]=al;}
void dfs(int x){sum[x]++;for(int i=first[x];i;i=a[i].next){dfs(a[i].y);sum[x]+=sum[a[i].y];}}
int main(){freopen("a.in","r",stdin);jc[1]=1;for(int i=2;i<=maxn;i++) jc[i]=(jc[i-1]*i)%mod;inv[1]=1;for(int i=2;i<=maxn;i++){inv[i]=((LL)(mod-mod/i))*inv[mod%i]%mod;}int T,n,m,x,y;scanf("%d",&T);while(T--){scanf("%d%d",&n,&m);rt=n+1;for(int i=1;i<=n;i++) fa[i]=-1;al=0;memset(first,0,sizeof(first));for(int i=1;i<=m;i++){scanf("%d%d",&x,&y);fa[x]=y;ins(y,x);}for(int i=1;i<=n;i++)if(fa[i]==-1) fa[i]=rt,ins(rt,i);memset(sum,0,sizeof(sum));dfs(rt);LL ans=jc[sum[rt]-1];for(int i=1;i<=n;i++){ans=ans*inv[sum[i]]%mod;}printf("%lld\n",ans);}return 0;}

[uva11174]村民排队 递推+组合数+线性求逆元的更多相关文章

  1. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  2. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  3. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

  4. 51nod 1126 求递推序列的第N项 思路:递推模拟,求循环节。详细注释

    题目: 看起来比较难,范围10^9 O(n)都过不了,但是仅仅是看起来.(虽然我WA了7次 TLE了3次,被自己蠢哭) 我们观察到 0 <= f[i] <= 6 就简单了,就像小学初中学的 ...

  5. 一种递推组合数前缀和的Trick

    记录一下一种推组合数前缀和的方法 Trick 设\(\sum_{i = 0}^m C_n^i = S(n, m)\) \(S\)是可以递推的 \(S(n, m + 1) = S(n, m) + C_{ ...

  6. bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...

  7. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  8. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  9. 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

随机推荐

  1. 3dContactPointAnnotationTool开发日志(十五)

      有时候拖动一个窗口的时候可能直接拖出去了那就再也拖不回来只能reset重新来过:   于是开了个类成员变量在start里记录了一下panel的位置: var lp = panel.GetCompo ...

  2. python 查看趴下来的数据

    #coding=utf-8 import re from lxml import etree import requests def requests_view(response): import w ...

  3. c++ int 负数 补码 隐式类型转换

    unsigned y = ; ; cout << x + y << endl; 对于上述的结果为 这里面有一个负数的补码问题和不同类型之间的隐式类型转换问题 首先负数的表示方法 ...

  4. Gradle sync failed: Failed to find Build Tools revision 26.0.2的解决办法

    说明在android studio中没有 build tools 的26.0.2的版本,你确认一下,是否是这样: 点击==>android studio的菜单栏中Tools==>andro ...

  5. html5 js canvas中画星星的函数

    function drawStar(cxt, x, y, outerR, innerR, rot) { cxt.beginPath(); ; i < ; i++) { cxt.lineTo(Ma ...

  6. 【Json】C#格式化JSON字符串

    很多时候我们需要将json字符串以 {     "status": 1,     "sum": 9 }这种方式显示,而从服务端取回来的时候往往是这样 {&quo ...

  7. OpenStack Queens版本Horizon定制化开发

    工具环境 1.VMware workstation 12+: 2.Ubuntu系统+Linux Pycharm: 3.OpenStack Queens版本Horizon代码: 问题及解决 1.项目代码 ...

  8. python函数调用关系图(python call graph)

    由于要重构项目的部分代码,要整理好主要的函数调用关系,不想自己看代码慢慢画出结构,想找出一种通用的,节省人力的方法得出函数间的调用关系图,于是发现以下几个工具.(内网没装好graphviz,还没真正用 ...

  9. BFS的小结

    写这类搜索题.首先感觉要有个框架.比如我的框架对于BFS来说(对于DFS,我想有两个一个是递归版一个是栈版).这里是BFS小结.所以介绍一下BFS.我的框架.(也是搜集了网上许多神人的作品.) 1:节 ...

  10. 运行Jar包程序Shell

    启动: #!/bin/bash set -e JAVA_HOME=/usr/local/java# 检查是否有项目名 appName=$ if [ "$appName" == &q ...