快速幂:

代码:

ll pow_mod(ll a,ll b){
     ll ans=;
     while(b){
         if(b%==){
             ans=ans*a%mod;
         }
         a=a*a%mod;
         b=b/;                              //这里是转化为二进制之后的进位---左进位
     }
     return ans;
 }

例子:

2^10       1 0 1 0 a=2,b=10   0-->a=a*a;a=4 进位为1-->ans=4;a=16;

进位为0-->a=256;

进位为1-->ans=4*256=1024;
  2^8         1 0 0 0 a=2,b=8    a=a*a  a=4 a=16  a=256 ans=ans*a;
  2^11       1 0 1 1 a=2,b=11   ans=2;a=4;ans=8;a=16;a=256;ans=8*256;

写了一道题:

这道题要在快速幂中取模,利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化。

HDU1097A hard puzzle

Problem Description
lcy gives a hard puzzle to feng5166,lwg,JGShining and Ignatius: gave a and b,how to know the a^b.everybody objects to this BT problem,so lcy makes the problem easier than begin.
this puzzle describes that: gave a and b,how to know the a^b's the last digit number.But everybody is too lazy to slove this problem,so they remit to you who is wise.
 
Input
There are mutiple test cases. Each test cases consists of two numbers a and b(0<a,b<=2^30)
 
Output
For each test case, you should output the a^b's last digit number.
 
Sample Input
7 66
8 800
 
Sample Output
9
6
 
 
 
 
代码;
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
ull mod=1e9;
ull pow(ull a,ull b){
ull ans=;
   while(b!=){
if(b%==)
ans=ans*a%mod;
a=a*a%mod;
b=b/;
}
return ans;
}
int main(){
ull a,b;
while(~scanf("%llu%llu",&a,&b)){
ull cnt=pow(a,b);
ull ans=cnt%;
printf("%llu\n",ans);
}
return ;
}
 

HDU 1097.A hard puzzle-快速幂/取模的更多相关文章

  1. hdu 1097 A hard puzzle 快速幂取模

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...

  2. 题解报告:hdu 1061 Rightmost Digit(快速幂取模)

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  3. HDU 1061 Rightmost Digit (快速幂取模)

    题意:给定一个数,求n^n的个位数. 析:很简单么,不就是快速幂么,取余10,所以不用说了,如果不会快速幂,这个题肯定是周期的, 找一下就OK了. 代码如下: #include <iostrea ...

  4. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  5. HDU 1061.Rightmost Digit-规律题 or 快速幂取模

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  7. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

  8. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  9. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

随机推荐

  1. HashMap详谈以及实现原理

    (一).HashMap 基于哈希表的 Map 接口的实现 允许使用 null 值和 null 键 HashMap不是线程安全,想要线程安全,Collections类的静态方法synchronizedM ...

  2. ZooKeeper开发者指南(五)

    引言 这个文档是为了想利用ZooKeeper的协调服务来创建分布式应用的开发者提供的指南.它包括概念和实践的信息. 这个文档的一开始的的四部分呈现了不同ZooKeeper高级概念的的讨论.理解Zook ...

  3. 2015/9/17 Python基础(13):函数

    函数是对程序逻辑进行结构化或过程化的一种编程方法. Python的函数返回值当什么也不返回时,返回了None和大多数语言一样,Python返回一个值或对象.只是在返回容器对象时,看起来像返回多个对象. ...

  4. activemq依赖包获取

    现在项目中使用的是activemq-all.jar的jar,17M多,里面集成了日志.spring等相关的包.但项目启动时发现系统使用的是activemq包中的日志实现,没有用本项目的日志包.只能将整 ...

  5. 透彻理解Spring事务设计思想之手写实现(山东数漫江湖)

    前言 事务,是描述一组操作的抽象,比如对数据库的一组操作,要么全部成功,要么全部失败.事务具有4个特性:Atomicity(原子性),Consistency(一致性),Isolation(隔离性),D ...

  6. HDU 1465 不容易系列之一 (错排公式+容斥)

    题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...

  7. 完全背包问题入门 (dp)

    问题描述: 有n种重量和价值分别为Wi,Vi的物品,从这些中挑选出总重量不超过W的物品,求出挑选物品的价值总和的最大值,每种物品可以挑选任意多件. 分析: 令dp[i+1][j]表示从前i件物品中挑选 ...

  8. HDU 1180 诡异的楼梯 (广搜)

    题目链接 Problem Description Hogwarts正式开学以后,Harry发现在Hogwarts里,某些楼梯并不是静止不动的,相反,他们每隔一分钟就变动一次方向. 比如下面的例子里,一 ...

  9. Ribbon自带负载均衡策略比较

    Ribbon自带负载均衡策略比较 策略名 策略声明 策略描述 实现说明 BestAvailableRule public class BestAvailableRule extends ClientC ...

  10. selenium===selenium自动化添加日志(转)

    本文转自 selenium自动化添加日志 于logging日志的介绍,主要有两大功能,一个是控制台的输出,一个是保存到本地文件 先封装logging模块,保存到common文件夹命名为logger.p ...