快速幂:

代码:

ll pow_mod(ll a,ll b){
     ll ans=;
     while(b){
         if(b%==){
             ans=ans*a%mod;
         }
         a=a*a%mod;
         b=b/;                              //这里是转化为二进制之后的进位---左进位
     }
     return ans;
 }

例子:

2^10       1 0 1 0 a=2,b=10   0-->a=a*a;a=4 进位为1-->ans=4;a=16;

进位为0-->a=256;

进位为1-->ans=4*256=1024;
  2^8         1 0 0 0 a=2,b=8    a=a*a  a=4 a=16  a=256 ans=ans*a;
  2^11       1 0 1 1 a=2,b=11   ans=2;a=4;ans=8;a=16;a=256;ans=8*256;

写了一道题:

这道题要在快速幂中取模,利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化。

HDU1097A hard puzzle

Problem Description
lcy gives a hard puzzle to feng5166,lwg,JGShining and Ignatius: gave a and b,how to know the a^b.everybody objects to this BT problem,so lcy makes the problem easier than begin.
this puzzle describes that: gave a and b,how to know the a^b's the last digit number.But everybody is too lazy to slove this problem,so they remit to you who is wise.
 
Input
There are mutiple test cases. Each test cases consists of two numbers a and b(0<a,b<=2^30)
 
Output
For each test case, you should output the a^b's last digit number.
 
Sample Input
7 66
8 800
 
Sample Output
9
6
 
 
 
 
代码;
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
ull mod=1e9;
ull pow(ull a,ull b){
ull ans=;
   while(b!=){
if(b%==)
ans=ans*a%mod;
a=a*a%mod;
b=b/;
}
return ans;
}
int main(){
ull a,b;
while(~scanf("%llu%llu",&a,&b)){
ull cnt=pow(a,b);
ull ans=cnt%;
printf("%llu\n",ans);
}
return ;
}
 

HDU 1097.A hard puzzle-快速幂/取模的更多相关文章

  1. hdu 1097 A hard puzzle 快速幂取模

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...

  2. 题解报告:hdu 1061 Rightmost Digit(快速幂取模)

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  3. HDU 1061 Rightmost Digit (快速幂取模)

    题意:给定一个数,求n^n的个位数. 析:很简单么,不就是快速幂么,取余10,所以不用说了,如果不会快速幂,这个题肯定是周期的, 找一下就OK了. 代码如下: #include <iostrea ...

  4. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  5. HDU 1061.Rightmost Digit-规律题 or 快速幂取模

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  7. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

  8. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  9. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

随机推荐

  1. Vs2013 agent 安装

    1. 在windows 2008 R2上安装vs2013 agents需要满足: 1) .net 3.5 2) sp1补丁包(同windows7 sp1) 2. 安装vs2013 agents 步骤如 ...

  2. 【Codeforces441E】Valera and Number [DP]

    Valera and Number Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample Input 5 3 ...

  3. 20151024_001_C#基础知识(静态与非静态的区别,值类型和引用类型,堆和栈的区别,字符串的不可变性,命名空间)

    1:我们把这些具有相同属性和相同方法的对象进行进一步的封装,抽象出来类这个概念. 类就是个模子,确定了对象应该具有的属性和方法. 对象是根据类创建出来的. 2:类:语法 [public] class ...

  4. bzoj 3450 DP

    首先我们设len[i]表示前i位,从第i位往前拓展,期望有多少个'o',那么比较容易的转移 len[i]=len[i-1]+1 s[i]='o' len[i]=0 s[i]='x' len[i]=(l ...

  5. 一些达成共识的JavaScript编码风格约定【转】

    如果你的代码易于阅读,那么代码中bug也将会很少,因为一些bug可以很容被调试,并且,其他开发者参与你项目时的门槛也会比较低.因此,如果项目中有多人参与,采取一个有共识的编码风格约定非常有必要.与其他 ...

  6. application.properties 文件的优先级

    bootstrapProperties #来自configServer的值 commandLineArgs #命令行参数 servletConfigInitParams servletContextI ...

  7. python中range函数与列表中删除元素

    一.range函数使用 range(1,5)   代表从1到4(不包含5),结果为:1,2,3,4   ,默认步长为1 range(1,5,2)   结果为:1, 3  (同样不包含5) ,步长为2 ...

  8. Java面试基础知识1

    1.动态绑定是指在执行期间判断所引用对象的实际类型,根据其实际的类型调用其相应的方法. 2.在将超类转换为子类之前,应该使用instanceof进行检查. 3.包含一个或者多个抽象方法的类本身必须被声 ...

  9. 动态替换Linux核心函数的原理和实现

    转载:https://www.ibm.com/developerworks/cn/linux/l-knldebug/ 动态替换Linux核心函数的原理和实现 在调试Linux核心模块时,有时需要能够实 ...

  10. Linux 入门记录:十三、Linux 扩展权限

    一.默认权限 每一个终端都有一个 umask 属性,是用来确定新建文件或目录的默认权限的“掩码”(mask 有“掩码”的含义,至于 u,后面说). Linux 中一般有默认的权限掩码,使用命令 uma ...