HDU - 5829:Rikka with Subset (NTT)
Yuta has n numbers A[1]~A[n] and a number K. For any none empty subset S of the numbers, the value of S is equal to the sum of the largest min(|S|,k) numbers in S. The value of the array A is equal to the sum of the value of all none empty subset of the numbers.
Now Yuta shows the n numbers, And he wants to know the value of the array for each K in [1,n].
It is too difficult for Rikka. Can you help her?
InputThe first line contains a number t(1<=t<=10), the number of the testcases.
For each testcase, the first line contains a number n(1<=n<=100000), the number of numbers Yuta has. The second line contains n number A[1]~A[n](0<=A[i]<=10^9).OutputFor each testcase, print a line contains exactly n numbers, the ith number is the value of the array when K=i. The answer may be very large, so you only need to print the answer module 998244353.
Sample Input
2
3
1 1 1
5
1 2 3 4 5
Sample Output
7 11 12
129 201 231 239 240
题意:给定一个数组,F(k)表示所有集合s的前min(K,s)大之和。求所有F(k)。
思路:先得到方程f(x),然后一般来说一个组合数*一个指数,可以直接转化一下用NTT加速;或者用第二类斯特林转化,再套NTT或FFT卷积。

关键在于找到某两个系数之和为定值,然后分别以其为“基”构造函数,然后取卷积这两个函数。
#include<bits/stdc++.h>
#define rep(i,x,y) for(int i=x;i<=y;i++)
using namespace std;
#define ll long long
#define MOD Mod
const int G=;
const int maxn=;
const int Mod=;
int qpow(int v,int p)
{
int ans=;
for(;p;p>>=,v=1ll*v*v%Mod)
if(p&)ans=1ll*ans*v%Mod;
return ans;
}
void rader(int y[], int len) {
for(int i=,j=len/;i<len-;i++) {
if(i<j) swap(y[i],y[j]);
int k=len/;
while(j>=k) j-=k,k/=;
if(j<k) j+=k;
}
}
void NTT(int y[],int len,int opt) {
rader(y,len);
for(int h=;h<=len;h<<=) {
int wn=qpow(G,(MOD-)/h);
if(opt==-) wn=qpow(wn,Mod-);
for(int j=;j<len;j+=h) {
int w=;
for(int k=j;k<j+h/;k++) {
int u=y[k];
int t=(ll)w*y[k+h/]%MOD;
y[k]=(u+t)%MOD;
y[k+h/]=(u-t+MOD)%MOD;
w=(ll)w*wn%MOD;
}
}
}
if(opt==-) {
int t=qpow(len,MOD-);
for(int i=;i<len;i++) y[i]=(ll)y[i]*t%MOD;
}
}
int inv[maxn],A[maxn],B[maxn],a[maxn],f[maxn],p2[maxn];
int main() {
int T,N;
f[]=inv[]=p2[]=;
rep(i,,) p2[i]=(ll)p2[i-]*%Mod;
rep(i,,) f[i]=(ll)f[i-]*i%Mod;
inv[]=qpow(f[],Mod-);
for(int i=-;i>=;i--) inv[i]=(ll)inv[i+]*(i+)%Mod;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
int len=; while(len<=N*) len<<=;
rep(i,,len) A[i]=B[i]=;
rep(i,,N) scanf("%d",&a[i]);
sort(a+,a+N+); reverse(a+,a+N+);
rep(i,,N-){
A[i]=inv[i];
B[i]=(ll)f[N-i-]*p2[i]%Mod*a[N-i]%Mod;
} NTT(A,len,); NTT(B,len,);
rep(i,,len-) A[i]=(ll)A[i]*B[i]%Mod; //乘完,不能只乘到N
NTT(A,len,-); int ans=;
rep(i,,N){
(ans+=(ll)inv[i-]*A[N-i]%Mod)%=Mod;
printf("%d ",ans);
}
puts("");
}
return ;
}
HDU - 5829:Rikka with Subset (NTT)的更多相关文章
- HDU 5829 Rikka with Subset(NTT)
题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...
- HDU 6092 Rikka with Subset(dp)
http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...
- HDU - 6416 :Rikka with Seam(DP & 前缀和 & 数学)
pro:给定N*M的矩阵,现在让你在每一行删去一个位置,然后形成新N*(M-1)的矩阵,问有多少种不同的新的矩阵.需要满足相邻行删去的位置不大于K. (题目是01矩阵,其实任意矩阵都可以做,本题算法里 ...
- HDU 5795:A Simple Nim(博弈)
http://acm.hdu.edu.cn/showproblem.php?pid=5795 A Simple Nim Problem Description Two players take t ...
- HDU 6188:Duizi and Shunzi(贪心)(广西邀请赛)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6188 题意 有n个数字,每个数字小于等于n,两个相同的数字价值为1,三个连续的数字价值为1 .问这n个 ...
- HDU 3183:A Magic Lamp(RMQ)
http://acm.hdu.edu.cn/showproblem.php?pid=3183 题意:给出一个数,可以删除掉其中m个字符,要使得最后的数字最小,输出最后的数字(忽略前导零). 思路:设数 ...
- HDU 6011:Lotus and Characters(贪心)
http://acm.hdu.edu.cn/showproblem.php?pid=6011 题意:共有n种字符,每种字符有一个val和一个cnt,代表这个字符的价值和数量.可以制造的总价值是:第一个 ...
- HDU 3487:Play with Chain(Splay)
http://acm.hdu.edu.cn/showproblem.php?pid=3487 题意:有两种操作:1.Flip l r ,把 l 到 r 这段区间 reverse.2.Cut a b c ...
- HDU 5968:异或密码(暴力)
http://acm.hdu.edu.cn/showproblem.php?pid=5968 题意:中文题意. 思路:一开始不会做,后来发现数据范围很小,而且那个数要是连续的,所以可能把所有情况枚举出 ...
随机推荐
- MySQL SQL Injection(注入)
如果通过网页接收用户输入,而后再把这些数据插入到数据库中,那么你可能就会碰到 SQL 注入式攻击.本节简要介绍如何防范这种攻击,确保脚本和 MySQL 语句的安全性. 注入式攻击往往发生在要求用户输入 ...
- 剑指offer编程题66道题 26-35
26.二叉搜索树与双向链表 题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 中序遍历思路:按照右中左的顺序,中序遍历对 ...
- Spark机器学习7·降维模型(scala&python)
PCA(主成分分析法,Principal Components Analysis) SVD(奇异值分解法,Singular Value Decomposition) http://vis-www.cs ...
- tinyxml优化之一
原文链接:http://www.cnblogs.com/zouzf/p/4154569.html 最近在搞XML解析优化,公司引擎用了tinyxml1和tinyxml2两个XML库,后者的效率比前者高 ...
- Cnblog页面美化小记
Cnblog页面美化小记 这两天我在网上翻找了许许多多的资料,打开了不计其数的博客,对着\(js\).\(html\).\(css\)等文件删删改改,在浏览器和\(vscode\)间辗转腾挪...总算 ...
- LeetCode——single-number系列
LeetCode--single-number系列 Question 1 Given an array of integers, every element appears twice except ...
- bootstrap正则表达式验证手机 座机 邮箱
$('#CusForm').bootstrapValidator({ fields : { //验证手机 'customer.mobile' : { //input中的name 值 validator ...
- Java的Collection集合的常用方法
boolean add(E e) 添加元素到Collection集合中. boolean addAll(Collection<? extends E> c) 将指定c中的所有元素都添加到此 ...
- Java Override和@Override
Override : 重写. 当子类的某个方法的方法名.返回值.参数列表均与父类的方法保持一致,我们就可以说子类重写了父类的该方法. 其中需要注意: 父类中修饰符为private, static, f ...
- Hyper:基于Hypervisor的容器化解决方案
近日,初创公司HyperHQ发布了他们的开源项目Hyper,Hyper是一个可以在hypervisor上运行Docker镜像的引擎,它融合了Docker容器和虚拟机的优点,旨在打造一个性能更好.更安全 ...