w用有限来表达无限,由已知到未知,化未知为已知。

https://en.wikipedia.org/wiki/Taylor_series

The Greek philosopher Zeno considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility: the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by Archimedes, as it had been prior to Aristotle by the Presocratic Atomist Democritus. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result.[1] Liu Hui independently employed a similar method a few centuries later.[2]

In the 14th century, the earliest examples of the use of Taylor series and closely related methods were given by Madhava of Sangamagrama.[3][4] Though no record of his work survives, writings of later Indian mathematicians suggest that he found a number of special cases of the Taylor series, including those for the trigonometric functions of sinecosinetangent, and arctangent. The Kerala school of astronomy and mathematics further expanded his works with various series expansions and rational approximations until the 16th century.

In the 17th century, James Gregory also worked in this area and published several Maclaurin series. It was not until 1715 however that a general method for constructing these series for all functions for which they exist was finally provided by Brook Taylor,[5] after whom the series are now named.

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the 18th century.

https://zh.wikipedia.org/wiki/刘徽

刘徽(约225年-约295年[1]),三国时代魏国数学家。白尚恕考证他是山东淄博淄川人,梁敬王刘定国之孙菑乡侯刘逢喜的后裔[2]

刘徽为《九章算术》做注,于三国景元四年(公元263年)成书,[3]其中他提出用割圆术计算圆周率的方法,计算出正192边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {157}{50}}} (即 3.14),在此基础上又计算出正3072边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {3927}{1250}}} (即 3.1416)。作此书注时,他还依据其“割补术”为证勾股定理,另辟蹊径作青朱出入图。图虽失传,但据其“出入相补、以盈补虚”原理,后人参照书中类似方法还原了此图。

刘徽后撰《重差》,初以后失传,仅《重差》一卷单行,因其第一题是测量海岛高度和距离的问题,故又名《海岛算经》。此外刘徽还著有《鲁史欹器图》,《九章重差图》,唐代失传。

刘徽的卓越成就受到后人的重视,宋徽宗时代为恢复数学教学制度,便追封了部分历代的天算家,其中便有刘徽。

Taylor series的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  4. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  5. \(\S1 \) Gaussian Measure and Hermite Polynomials

    Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. 立体匹配:关于理解middlebury提供的立体匹配代码后的精减

    Middlebury立体匹配源码总结 优化方法 图像可否预处理 代价计算可否采用BT方式 可选代价计算方法 可否代价聚合 可否MinFilter优化原始代价 WTA-Box 可以 可以 AD/SD 可 ...

  8. 一个Sqrt谋杀触发功能

    我们平时常常会有一些数据运算的操作,须要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是怎样实现的?就拿最常常使用的sqrt函数来说吧.系统怎么来实现这个常常调用的函数呢? ...

  9. Pi

    Math]Pi   数学知识忘地太快,在博客记录一下pi的生成. 100 Decimal places 3.1415926535897932384626433832795028841971693993 ...

随机推荐

  1. Android Training - 使用IntentService运行任务(Lesson 2 - 发送任务给IntentService)

    写在http://hukai.me/blog/android-training-18-running-background-service-lesson-2/

  2. Sublime Text 2 和 Verilog HDL

    Sublime Text 2 和 Verilog HDL Date  Fri 04 July 2014 Tags Sublime Text / Vivado Sublime Text 代码编辑器之于程 ...

  3. JS高程3:错误处理和调试

    浏览器打开控制台的快捷键 Ctrl+shift+I try-catch语句 语法 try{ // 可能会导致错误的代码 } catch(error){ // 在错误发生时怎么处理 } 可以自定义错误信 ...

  4. JDK配置之坑

    JKD的配置我这里就不隆重介绍了,引用一篇百度经验,足够让大家去学习 JDK配置:https://jingyan.baidu.com/article/3c343ff70bc6ea0d377963df. ...

  5. C运行库和VC对应关系

    ## C运行库和VC对应关系----------------------------------------------------------------Msvcr60.DLL -- VC6Msvc ...

  6. winform 打印条码

    一个winform打印功能的示例 操作步骤:1.新建winform项目及创建窗体2.拖取 打印 相关控件 PageSetupDialog . PrintDialog . PrintDocument . ...

  7. linux学习笔记命令篇1---命令ls

    前言:  linux中接触最多的就是命令和文件. 命令 命令是有其格式的, 一般格式是command [option] parameter1 parameter2 [paramete3 ...]: 注 ...

  8. Unity—JsonFx序列化场景

    场景数据类: /// <summary> /// 关卡数据 /// </summary> public class LevelData {     //关卡名称     pub ...

  9. Angular js ie 7,8 兼容性

    Angularjs  官网有云: 1)在html 里面 ,有ng-app 的标签里需要定义个id ,id='ng-app'; 2)ie 7及以下版本需要json2.js或json3.js,主要用来解析 ...

  10. 关于JSP生命周期的叙述,下列哪些为真?

    关于JSP生命周期的叙述,下列哪些为真? A.JSP会先解释成Servlet源文件,然后编译成Servlet类文件 B.每当用户端运行JSP时,jspInit()方法都会运行一次 C.每当用户端运行J ...