一般的分治FFT是指:

https://www.luogu.org/problemnew/show/P4721

考虑后面的f和前面的f有关系,但是贡献可以分着计算,逐一累计上去。

考虑cdq分治。算出前面的[1,mid]的f之后,可以直接一次NTT,把后面[mid+1,r]的f的一部分算出来,累加上去。

对于后面的部分,发现都是一个前缀没有计算上。继续分治下去即可。

画个图就是这样。

细节注意:

1.边界,

2.0~n-1

3.四倍N的数组

4.注意之后每次都是NTT一个前缀。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
#define int long long
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=1e5+;
const int mod=;
const int G=;
const int GI=;
int n,m;
ll qm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=ret*x%mod;
x=x*x%mod;
y>>=;
}
return ret;
}
int rev[*N];
void fft(int *a,int n,int c){
for(reg i=;i<=n-;++i){
if(i<rev[i]) swap(a[i],a[rev[i]]);
}
for(reg p=;p<=n;p<<=){
ll gen;
if(c==) gen=qm(G,(mod-)/p);
else gen=qm(GI,(mod-)/p);
for(reg l=;l<n;l+=p){
ll lp=;
for(reg k=l;k<l+p/;++k){
ll tmp=a[k+p/];
a[k+p/]=(a[k]-tmp*lp%mod+mod)%mod;
a[k]=(a[k]+tmp*lp%mod)%mod;
lp=lp*gen%mod;
}
}
}
} ll g[*N],f[*N],c[*N],d[*N];
void calc(int *a,int *b,int n){
for(reg i=;i<n;++i){
rev[i]=(rev[i>>]>>)|((i&)?n>>:);
}
fft(a,n,);fft(b,n,);
for(reg i=;i<n;++i) b[i]=a[i]*b[i]%mod;
fft(b,n,-);
ll inv=qm(n,mod-);
for(reg i=;i<n;++i) b[i]=b[i]*inv%mod;
}
void divi(int l,int r,int L,int R){
//cout<<" divi "<<l<<" "<<r<<" and "<<L<<" "<<R<<endl;
if(l==r){
return;
}
int mid=(l+r)>>;
int Md=(L+R)>>;
divi(l,mid,L,Md); //cout<<" bac to "<<l<<" "<<r<<endl;
for(reg i=l;i<=mid;++i) c[i-l]=f[i];
for(reg i=mid+;i<=r;++i) c[i-l]=;
for(reg i=L;i<=R;++i) d[i-L]=g[i];
for(reg i=r-l+;i<=(r-l+)*-;++i) c[i]=d[i]=;
calc(c,d,(r-l+)*);
for(reg i=mid+;i<=r;++i) f[i]=(f[i]+d[i-l])%mod;
//cout<<" f[4] "<<f[4]<<" f[5] "<<f[5]<<endl; divi(mid+,r,L,Md);
}
int main(){
rd(n);
int lp=n;
for(reg i=;i<n;++i) rd(g[i]);
g[]=;f[]=;
for(m=n,n=;n<m;n<<=);
divi(,n-,,n-);
for(reg i=;i<lp;++i){
printf("%lld ",f[i]);
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/12/21 14:08:16
*/

配赠福利:

一、

升级版:真的分治fft(这个代码我觉得如果有l>=r-l+1,那么可以直接return掉,后面[l,mid]*[l,mid]没有意义。)

现在的g变成了f,直接刚才那样cdq,会出现一些mid+1~r区间的f还要贡献,但是我们目前没有计算出来

还是考虑cdq分治

假设计算出来了[l,mid],那么,先把[l,mid]*[l,mid]的多项式的贡献计算出来

剩下没有算出来的怎么补?

每个值剩下的没有计算的部分,其右部分没有被计算到的区间,一定是一个l>=r-l+1的区间

如果有l>=r-l+1,那么把f[0,r-l]*f[l,mid]再计算一下,然后*2(其实本质上是补全第一次乘漏的部分)

是一种延迟处理的方法,因为先算的话,有一半没有计算出来;而反过来再算的时候,涉及到的f就已经都算完了。恰好,两边对称,所以*2解决。

二、

分治FFT字面意思理解一下的话,,就是分治+FFT。。。

所以,如果要计算:

(x+a)*(x+b)*(x+c)*(x+d)*....

直接暴力算的复杂度是(2+3+4+...n)*logn

分治的话,每个(x+a)贡献的是2的长度,,一共贡献logn次,所以O(nlog^2n)

[学习笔记]分治FFT的更多相关文章

  1. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  2. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  3. 快速傅里叶变换学习笔记(FFT)

    什么是FFT FFT是用来快速计算两个多项式相乘的一种算法. 如果我们暴力计算两个多项式相乘,复杂度必然是\(O(n^2)\)的,而FFT可以将复杂度降至\(O(nlogn)\) 如何FFT 要学习F ...

  4. 「学习笔记」FFT及NTT入门知识

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  5. 【学习笔记】FFT

    1.内容 由于noble_太懒 不想写了 非常好的博客: https://www.cnblogs.com/rvalue/p/7351400.html http://www.cnblogs.com/ca ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 分治 FFT学习笔记

    先给一道luogu板子题:P4721 [模板]分治 FFT 今天模拟有道题的部分分做法是分治fft,于是就学了一下.感觉不是很难,国赛上如果推出式子的话应该能写出来. 分治fft用来解决这么一个式子\ ...

  8. 分治FFT学习笔记

    用途 在\(O(n\log^2 n)\)的时间内做诸如 \[ f_n=\sum_{i=0}^{n-1} f_ig_{n-i} \] 或是 \[ f_n=\sum_{i=0}^{n-1} f_if_{n ...

  9. 多项式求逆/分治FFT 学习笔记

    一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \ ...

随机推荐

  1. uvaoj 133 - The Dole Queue(逻辑,环形队列数数)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. 【hidden】微信小程序hidden属性使用示例

    hidden属性用于隐藏标签,代码示例: <view hidden="{{!statusTag}}">我出来了~</view> <button bin ...

  3. Python全栈 进阶(进阶内容都在这了)

    原文地址 https://yq.aliyun.com/articles/632754?spm=a2c4e.11155435.0.0.23eb3312feB6dG ................... ...

  4. leetcode-回文链表

    请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶:你能否用 O(n) 时间复杂 ...

  5. 详解Jedis连接池报错处理

    在使用Jedis连接池模式下,比较常见的报错如下: redis.clients.jedis.exceptions.JedisConnectionException:Could not get a re ...

  6. 2018(容斥定理 HDU6286)

    2018 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. 官方文档 恢复备份指南一 Introduction to Backup and Recovery

    1.备份分为:物理备份和逻辑备份    物理备份:备份数据文件  控制文件  归档日志文件     逻辑备份:EXP EXPDP备份等 物理备份为主,逻辑做补充     2.错误的类型         ...

  8. activiti工作流已办和待办查询sql

    最近项目中遇到一个问题,需要activiti的工作流表和业务表关联分页查询,然而我对于工作流的查询并不太熟悉,所以学习并总结如下. 想看看activiti到底怎么查询的待认领和待办.已办的查询sql, ...

  9. Spring学习(三)—— 自动装配案例分析

    Spring_Autowiring collaborators 在Spring3.2.2中自动装配类型,分别为:no(default)(不采用自动装配).byName,byType,construct ...

  10. hadoop下安装mysql

    http://www.cnblogs.com/zhuyp1015/p/3561470.html       第一步:先把这个文件放入到linux环境下桌面. 接着编写脚本:sudo apt-get u ...