有了haar特征,有了提升性能的积分图,是不是已经可以很好的解决人脸检测问题了?答案是:no. 因为,计算每一个特征值的时候速度都大幅提升了,但是,一个小小的24*24是人脸图像根据不同的位置,

以及不同的缩放,可以产生超过160,000个特征!这个数量太庞大了,所以肯定要舍弃大量的特征。那么,如何保证使用少量的特征,而又能得到精确的结果呢?

  大神永远有解决方法,viola等人使用adaboost来进行分类。声明一下,adaboost并不是viola等人提出的,而是Freund和Schapire提出。但是viola的伟大正是因为他将这个模型首次用到了人脸识别中,这使得

人脸识别在嵌入式系统应用成为一个可能的事情。

  什么是adaboost呢?

  AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,是一种机器学习方法,由Yoav Freund和Robert Schapire提出。[1]AdaBoost方法的自适应在于:前一个分类器分错的样本会被用来训练下一个分类器。

AdaBoost方法对于噪声数据和异常数据很敏感。但在一些问题中,AdaBoost方法相对于大多数其它学习算法而言,不会很容易出现过拟合现象。AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只

要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负

系数,同样也能提升分类效果。

  AdaBoost方法是一种迭代算法,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率。每一个训练样本都被赋予一个权重,表明它被某个分类器选入训练集的概率。如果某个样本点已经被准确

地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost方法能“聚焦于”那些较难分(更富信息)的样本上。

在具体实现上,最初令每个样本的权重都相等,对于第k次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器Ck。然后就根据这个分类器,来提高被它分错的的样本的权重,并降低被正确分类的样本权重。

然后,权重更新过的样本集被用于训练下一个分类器Ck[2]。整个训练过程如此迭代地进行下去。

  人脸检测使用adaboost的流程是什么呢?

  首先是要把级联的概念搞清楚。所有伟大的东西,其思想都是很简单的。

级联结构:

  将多个强分类器连接在一起进行操作。每一个强分类器都由若干个弱分类器加权组成。例如,一个级联用的强分类器包含20个左右的弱分类器,然后在将10个强分类器级联起来,就构成了一个级联强分类器,

这个级联强分类器中总共包括200个(20*10)分类器。因为每一个强分类器对负样本的判别准确度非常高,所以一旦发现检测到的目标位负样本,就不在继续调用下面的强分类器,减少了很多的检测时间。因为一幅

图像中待检测的区域很多都是负样本,这样由级联分类器在分类器的初期就抛弃了很多负样本的复杂检测,所以级联分类器的速度是非常快的;只有正样本才会送到下一个强分类器进行再次检验,这样就保证了最后

输出的正样本的伪正(false positive)的可能性非常低。

  最优弱分类器:

寻找合适的阈值,使该分类器对所有样本的判断误差最小。对于每个特征f,计算所有训练样本的特征值并排序:

遍历排序后的特征值,对于序列中的每个元素,计算以下值:

1.全部人脸样本的权重和t1

2.全部非人脸样本的权重和t0

3.在此元素之前的人脸样本的权重和s1

4.在此元素之前的非人脸样本的权重和s0

5.此元素的分类误差:r=min{[s1+(t0-s0)],[s0+(t1-s1)]}

找出r值最小的元素作为最优阈值,最优分类器就产生了。

  强分类器:

For T轮迭代:

1.重新统一权重

2.训练出本轮的最优弱分类器(详见上一P)

3.根据本轮迭代中的分类结果重新分配样本权重(增加错误分配样本的权重)

这样,T轮之后将产生T个最优弱分类器

组合T个最优弱分类器得到强分类器:

  相当于让所有弱分类器投票,再对投票结果按照弱分类器的错误率加权求和,将投票加权求和的结果与平均投票结果比较得出最终的结果。

  级联分类器的训练过程:

 参考文档:

1 https://wizardforcel.gitbooks.io/dm-algo-top10/content/adaboost.html

2 https://zh.wikipedia.org/wiki/AdaBoost

3 https://blog.csdn.net/cyh_24/article/details/39755661

人脸检测----Adaboost学习方法的更多相关文章

  1. 基于Haar特征Adaboost人脸检测级联分类

    基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...

  2. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  3. 基于Haar特征的Adaboost级联人脸检测分类器

    基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 ...

  4. 照片美妆---基于Haar特征的Adaboost级联人脸检测分类器

    原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/3484223 ...

  5. 基于MATLAB的adaboost级联形式的人脸检测实现

    很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注 ...

  6. 基于AdaBoost的人脸检测

    原地址:http://blog.csdn.net/celerychen2009/article/details/8839097 人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差 ...

  7. Adaboost的几个人脸检测网站

    [1]基础学习笔记之opencv(1):opencv中facedetect例子浅析 http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411 ...

  8. 基于AdaBoost算法——世纪晟结合Haar-like特征训练人脸检测识别

      AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haa ...

  9. 人脸检测之Haar-like,Adaboost,级联(cascade)

    最新版本整理完毕,见: http://face2ai.com/MachineLearning-Haar-like-Adaboost-cascade 0:写在前面的话           写在前面的牢骚 ...

随机推荐

  1. LAMP架构

    LAMP(linux,apache,mysql,php)是linux系统下常用的网站架构模型,用来运行PHP网站.(这得apache是httpd服务),这些服务可以安装同意主机上,也可以安装不同主机上 ...

  2. jQuery自定义alert,confirm方法及样式

    学过JavaScript的都知道,alert().confirm()都是window对象特有的方法,而这两个方法我们平时使用的频率也很高,但是比较扎心的就是他自带的样式太... 因此,我整理了一个比较 ...

  3. pycharm 下使用tensorflow 之环境配置

    我们常常看代码使用ide里面看,而且还可以看到调试信息(虽然tensorflow有专门的调试介绍哈) 但是,常常代码在终端里面执行可以直接执行,但是到pycharm里面就会出现各种问题,常见的就是找不 ...

  4. Linux shell 信号继承

    shell中,向进程发送信号多多通过ctrl键加上一些功能键来实现,这里是常见的Ctrl组合键及其意义: 组合键 信号类型 意义 Ctrl+C INT信号,即interrupt信号 停止运行当前的作业 ...

  5. jdango 使用oss存储

    安装django-aliyun-oss2-storage-0.1.5.tar.gz settings文件添加 MEDIA_ROOT = os.path.join(BASE_DIR,'upload/') ...

  6. 十七、 Observer 观察者设计模式

    设计: 代码清单: Observer public interface Observer { void update(NumberGenerator generator); } DigitObserv ...

  7. 初学c# -- 学习笔记(9) 关于SQL2008

    在做一个局域网的类似网盘的学习练习,服务端差不多了,在改bug.用vlc的dll做的全格式视频.音频预览在线播放下载等等. 在做服务端也遇到了一些问题,走了好多弯路. 开始把上传的视频.音频.图像.文 ...

  8. Java 数组元素合并并去重

    public class TestList { public static void main(String[] args) { Set<Integer> set = new TreeSe ...

  9. 查找 管道 exec

    #查找150天为使用的文件并列出find -type f -mtime +150 -exec ls -ltr {} \;#查找150天内120外的文件find -type f -mtime -150 ...

  10. leveldb 学习记录(六)SSTable:Block操作

    block结构示意图 sstable中Block 头文件如下: class Block { public: // Initialize the block with the specified con ...