[JSOI2018]列队
Description:
作为一名大学生,九条可怜在去年参加了她人生中的最后一次军训。
军训中的一个重要项目是练习列队,为了训练学生,教官给每一个学生分配了一个休息位置。每次训练开始前,所有学生都在各自的休息位置休息,但是当教官发出集合命令后,被点到的学生必须要到指定位置集合。
为了简化问题,我们把休息位置和集合位置抽象成一根数轴。一共有 \(n\) 个学生,第 \(i\) 个学生的休息位置是 \(a_i\)。每一次命令,教官会指定一个区间 \([l,r]\) 和集合点 \(K\) ,所有编号在 \([l,r]\) 内的学生都必须赶到集合点列队。在列队时,每一个学生需要选择 \([K,K+r-l]\) 中的一个整数坐标站定且不能有任何两个学生选择的坐标相同。学生从坐标 \(x\) 跑到坐标 \(y\) 需要耗费体力 \(\vert y-x \vert\) 。
在一天的训练中,教官一共发布了 \(m\) 条命令 \((l,r,K)\) ,现在你需要计算对于每一条命令,在所有可能的列队方案中,消耗的体力值总和最小是多少。
以下是对题意的一些补充:
任何两条命令是无关的,即在一条集合命令结束后,所有学生都会回到自己的休息位置,然后教官才会发出下一条命令。
在集合的时候,可能有编号不在 \([l,r]\) 内的学生处在区间 \([K,K+r-l]\) 中,这时他会自己跑开,且跑动的距离不记在消耗的体力值总和中。
Hint:
\(n,m \le 10^5,a_i,k \le 10^6\)
Solution:
都是列队,都是毒瘤题,懂的都懂
好吧其实也不算毒瘤
思路很容易想到,就是集合的相对顺序与休息时的相对顺序一样时体力值和取到最小
关键是怎么统计这个最小值
可以发现所有人可以分成向左走和向右走
向左走的贡献: \(\sum k+rk_i-1-a_i\)
向右走的贡献: \(\sum a_i-k+rk_i-1\)
\(\sum a_i\) 是定值 \(\sum k+rk_i-1\) 是个等差数列,直接算就行
如何判断向左向右呢? 魔改版主席树一直递归左右区间求解,具体看代码
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int bd=1e6+5,mxn=5e5+5,mxm=2e7+5;
int n,m,cnt,a[mxn],hd[mxn];
int rt[mxm],ls[mxm],rs[mxm],sz[mxm];
ll sum[mxm];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
struct ed {
int to,nxt;
}t[mxn<<1];
inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
}
void update(int las,int &p,int l,int r,int val)
{
if(!p) p=++cnt; sz[p]=sz[las]+1; sum[p]=sum[las]+val;
if(l==r) return ; int mid=(l+r)>>1;
if(val<=mid) update(ls[las],ls[p],l,mid,val),rs[p]=rs[las];
else update(rs[las],rs[p],mid+1,r,val),ls[p]=ls[las];
}
ll query(int las,int p,int l,int r,int s,int k)
{
if(!p) return 0;
ll num=sz[p]-sz[las],val=sum[p]-sum[las];
if(l>=k+s) return val-(2*k+2*s+num-1)*num/2;
if(r<=k+s+num-1) return (2*k+2*s+num-1)*num/2-val;
int mid=(l+r)>>1; num=sz[ls[p]]-sz[ls[las]];
return query(ls[las],ls[p],l,mid,s,k)+query(rs[las],rs[p],mid+1,r,s+num,k);
}
int main()
{
n=read(); m=read(); int l,r,k;
for(int i=1;i<=n;++i) a[i]=read(),update(rt[i-1],rt[i],1,bd,a[i]);
for(int i=1;i<=m;++i) {
l=read(); r=read(); k=read();
printf("%lld\n",query(rt[l-1],rt[r],1,bd,0,k));
}
return 0;
}
[JSOI2018]列队的更多相关文章
- [JSOI2018]列队(主席树)
跟上次那道列队不一样,但都是九条可怜...(吉老师太强了) 在主席树上统计答案,因为值域只有 \(10^6\) 甚至不用离散化... \(Code\ Below:\) #include <bit ...
- P4559 [JSOI2018]列队
\(\color{#0066ff}{ 题目描述 }\) 作为一名大学生,九条可怜在去年参加了她人生中的最后一次军训. 军训中的一个重要项目是练习列队,为了训练学生,教官给每一个学生分配了一个休息位置. ...
- BZOJ5319 JSOI2018列队(主席树)
显然集合后相对位置不变最优.主席树上二分向左和向右的分界点即可.注意主席树的值域.我怎么天天就写点一眼题啊. #include<iostream> #include<cstdio&g ...
- 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】
题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...
- 洛谷P4559 [JSOI2018]列队(主席树)
题面 传送门 题解 首先考虑一个贪心,我们把所有的人按\(a_i\)排个序,那么排序后的第一个人到\(k\),第二个人到\(k+1\),...,第\(i\)个人到\(k+i-1\),易证这样一定是最优 ...
- [JSOI2018]军训列队
[JSOI2018]军训列队 题目大意: \(n(n\le5\times10^5)\)个学生排成一排,第\(i\)个学生的位置为\(a_i\).\(m(m\le5\times10^5)\)次命令,每次 ...
- BZOJ5319: [Jsoi2018]军训列队
BZOJ5319: [Jsoi2018]军训列队 https://lydsy.com/JudgeOnline/problem.php?id=5319 分析: 易知把所有人按原本的顺序放到\([K,K+ ...
- BZOJ5319/LOJ2551「JSOI2018」列队
问题描述 作为一名大学生,九条可怜在去年参加了她人生中的最后一次军训. 军训中的一个重要项目是练习列队,为了训练学生,教官给每一个学生分配了一个休息位置.每次训练开始前,所有学生都在各自的休息位置休息 ...
- BZOJ.5319.[JSOI2018]军训列队(主席树)
LOJ BZOJ 洛谷 看错了,果然不是\(ZJOI\)..\(jry\)给\(JSOI\)出这么水的题做T3么= = 感觉说的有点乱,不要看我写的惹=-= 对于询问\(l,r,k\),设\(t=r- ...
随机推荐
- python截图
import time import os, win32gui, win32ui, win32con, win32api def window_capture(dpath,name,srcbmp=[0 ...
- gerrit原理
个人理解: 这个就是审核代码是否合理性的工具,一般是资深研发人工确认代码是否存在缺陷,通过发送邮件通知变化. 也可理解为这个是个git服务器,多一个代码审查的功能. 但是它是个web界面,方便管理 ...
- Python深度学习案例2--新闻分类(多分类问题)
本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类 案例2:新闻分类(多分类问题) 1. 加载数据集 from keras.datasets import reuters (trai ...
- 删除Apache服务的命令
转到\Apache24\bin目录下,使用cmd命令sc delete apache2.2
- k8s 1.12.6版的kubeadm默认配置文件
这个对于提高安装配置的便捷性,相当有帮助. 命令如下: kubeadm config print-default 输出如下: apiEndpoint: advertiseAddress: 1.2.3. ...
- C#学习-析构函数
析构函数用于在类销毁之前释放类实例所使用的托管和非托管资源. 对于C#应用程序所创建的大多数对象,可以依靠.NET Framework的垃圾回收器(GC)来隐式地执行内存管理任务. 但是,若创建封装了 ...
- 【Android】Android 设置Activity窗体 不显示标题和全屏显示
[一]Android 设置Activity窗体 不显示标题 android:theme="@android:style/Theme.NoTitleBar" <activity ...
- python全栈开发day61-django简单的出版社网站展示,添加,删除,编辑(单表的增删改查)
day61 django内容回顾: 1. 下载: pip install django==1.11.14 pip install -i 源 django==1.11.14 pycharm 2. 创建项 ...
- python全栈开发day56-mysql
1.数据库和表 show总结 SHOW DATABASES;返回可用数据库的一个列表. SHOW TABLES;返回当前选择的数据库内可用表的列表. SHOW COLUMNS FROM custome ...
- ELK收集Nginx自定义日志格式输出
1.ELK收集日志的有两种常用的方式: 1.1:不修改源日志格式,简单的说就是在logstash中转通过 grok方式进行过滤处理,将原始无规则的日志转换为规则日志(Logstash自定义日志格式) ...