Louvain 算法原理
Louvain算法是一种基于图数据的社区发现算法,算法的优化目标为最大化整个数据的模块度,模块度的计算如下:
其中m为图中边的总数量,k_i表示所有指向节点i的连边权重之和,k_j同理。A_{i,j} 表示节点i,j之间的连边权重。有一点要搞清楚,模块度的概念不是Louvain算法发明的,而Louvain算法只是一种优化关系图模块度目标的一种实现而已。
Louvain算法的两步迭代设计:
最开始,每个原始节点都看成一个独立的社区,社区内的连边权重为0.
算法扫描数据中的所有节点,针对每个节点遍历该节点的所有邻居节点,衡量把该节点加入其邻居节点所在的社区所带来的模块度的收益。并选择对应最大收益的邻居节点,加入其所在的社区。这一过程化重复进行指导每一个节点的社区归属都不在发生变化。
对步骤1中形成的社区进行折叠,把每个社区折叠成一个单点,分别计算这些新生成的“社区点”之间的连边权重,以及社区内的所有点之间的连边权重之和。用于下一轮的步骤1。
该算法的最大优势就是速度很快,步骤1的每次迭代的时间复杂度为O(N),N为输入数据中的边的数量。步骤2 的时间复杂度为O(M + N), M为本轮迭代中点的个数。
迭代过程:
1, 假设我们最开始有5个点,互相之间存在一定的关系(至于什么关系,先不管),如下:
2. 假设在进过了步骤1的充分迭代之后发现节点2,应该加入到节点1所在的社区(最开始每个点都是一个社区,而自己就是这个社区的代表),新的社区由节点1代表,如下:
此时节点3,4,5之间以及与节点1,2之间没有任何归属关系。
3. 此时应该执行步骤2,将节点1,2组合成的新社区进行折叠,折叠之后的社区看成一个单点,用节点1来代表,如下:
此时数据中共有4个节点(或者说4个社区),其中一个社区包含了两个节点,而社区3,4,5都只包含一个节点,即他们自己。
4. 重新执行步骤1,对社区1,3,4,5进行扫描,假设在充分迭代之后节点5,4,3分别先后都加入了节点1所在的社区,如下:
5. 进行步骤2,对新生成的社区进行折叠,新折叠而成的社区看成一个单点,由节点1代表,结构如下:
此时由于整个数据中只剩下1个社区,即由节点1代表的社区。再进行步骤1时不会有任何一个节点的社区归属发生变化,此时也就不需要再执行步骤2,至此, 迭代结束。
转自: https://blog.csdn.net/xsqlx/article/details/79078867
Louvain 算法原理的更多相关文章
- Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...
- RSA算法原理
一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA ...
- LruCache算法原理及实现
LruCache算法原理及实现 LruCache算法原理 LRU为Least Recently Used的缩写,意思也就是近期最少使用算法.LruCache将LinkedHashMap的顺序设置为LR ...
- MySQL索引背后的数据结构及算法原理【转】
本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...
- OpenGL学习进程(13)第十课:基本图形的底层实现及算法原理
本节介绍OpenGL中绘制直线.圆.椭圆,多边形的算法原理. (1)绘制任意方向(任意斜率)的直线: 1)中点画线法: 中点画线法的算法原理不做介绍,但这里用到最基本的画0<=k ...
- 支持向量机原理(四)SMO算法原理
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...
- 分布式缓存技术memcached学习(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- GBDT算法原理深入解析
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...
随机推荐
- tfs2015 生成与发布 配置
先来看一张微软官方的自动生成与发布架构图,以便了解很多概念间的关系 1.安装好TFS2015(可以参考TFS2010的安装过程,尤其是账号权限相关),我自己是从TFS2010一路升级上来的(TFS20 ...
- Caffe-SSD相关源码说明和调试记录
1 对Blob的理解及其操作: Blob是一个四维的数组.维度从高到低分别是: (num_,channels_,height_,width_) 对于图像数据来说就是:图片个数,彩色通道个数, ...
- Canvas 和 SVG 的不同
Canvas 和 SVG 都允许您在浏览器中创建图形,但是它们在根本上是不同的. SVG SVG 是一种使用 XML 描述 2D 图形的语言. SVG 基于 XML,这意味着 SVG DOM 中的每个 ...
- idea插件actiBPM源码
actiBPM https://github.com/Activiti/Activiti
- Lombok 使用攻略
1. Lombok 简介 Lombok 可以通过简单的注解来帮助我们简化消除一些必须有但显得很臃肿的Java代码,通过使用对应的注解,可以在编译源码的时候生成对应的方法. Lombok 既是一个 ID ...
- 通过__block的作用深入研究block
block普通引用 默认情况下,在block中访问外部变量是通过复制一个变量来操作的,既可以读,但是写操作不对原变量生效,下面通过代码来举证 NSString *a = @"testa&qu ...
- EF+LINQ事物处理 C# 使用NLog记录日志入门操作 ASP.NET MVC多语言 仿微软网站效果(转) 详解C#特性和反射(一) c# API接受图片文件以Base64格式上传图片 .NET读取json数据并绑定到对象
EF+LINQ事物处理 在使用EF的情况下,怎么进行事务的处理,来减少数据操作时的失误,比如重复插入数据等等这些问题,这都是经常会遇到的一些问题 但是如果是我有多个站点,然后存在同类型的角色去操作 ...
- PCB特征阻抗计算
见教程:链接:https://pan.baidu.com/s/1V4UbEoKfMD1bilwu-Qwdyg 密码:ml6t
- Guava Cache用法介绍<转>
Guava Cache是在内存中缓存数据,相比较于数据库或redis存储,访问内存中的数据会更加高效.Guava官网介绍,下面的这几种情况可以考虑使用Guava Cache: 愿意消耗一些内存空间来提 ...
- go get fatal: could not read Username for 'https://code.xxx.org': terminal prompts disabled
用go get下载私有代码库的时候,莫名其妙产生了以下错误,公有代码库没有影响. chenchideMacBook-Pro:~ chenchi$ go get code.xxx.org/adarch/ ...