"""Random variable generators.

     integers
--------
uniform within range sequences
---------
pick random element
pick random sample
pick weighted random sample
generate random permutation distributions on the real line:
------------------------------
uniform
triangular
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises General notes on the underlying Mersenne Twister core generator: * The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
and is, therefore, threadsafe. """ from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512
import itertools as _itertools
import bisect as _bisect __all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
"expovariate","vonmisesvariate","gammavariate","triangular",
"gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate", "getrandbits", "choices",
"SystemRandom"] NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF # Translated by Guido van Rossum from C source provided by
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
# the Mersenne Twister and os.urandom() core generators. import _random class Random(_random.Random):
"""Random number generator base class used by bound module functions. Used to instantiate instances of Random to get generators that don't
share state. Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods: random(), seed(), getstate(), and setstate().
Optionally, implement a getrandbits() method so that randrange()
can cover arbitrarily large ranges. """ VERSION = 3 # used by getstate/setstate def __init__(self, x=None):
"""Initialize an instance. Optional argument x controls seeding, as for Random.seed().
""" self.seed(x)
self.gauss_next = None def seed(self, a=None, version=2):
"""Initialize internal state from hashable object. None or no argument seeds from current time or from an operating
system specific randomness source if available. If *a* is an int, all bits are used. For version 2 (the default), all of the bits are used if *a* is a str,
bytes, or bytearray. For version 1 (provided for reproducing random
sequences from older versions of Python), the algorithm for str and
bytes generates a narrower range of seeds. """ if version == 1 and isinstance(a, (str, bytes)):
x = ord(a[0]) << 7 if a else 0
for c in a:
x = ((1000003 * x) ^ ord(c)) & 0xFFFFFFFFFFFFFFFF
x ^= len(a)
a = -2 if x == -1 else x if version == 2 and isinstance(a, (str, bytes, bytearray)):
if isinstance(a, str):
a = a.encode()
a += _sha512(a).digest()
a = int.from_bytes(a, 'big') super().seed(a)
self.gauss_next = None def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, super().getstate(), self.gauss_next def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 3:
version, internalstate, self.gauss_next = state
super().setstate(internalstate)
elif version == 2:
version, internalstate, self.gauss_next = state
# In version 2, the state was saved as signed ints, which causes
# inconsistencies between 32/64-bit systems. The state is
# really unsigned 32-bit ints, so we convert negative ints from
# version 2 to positive longs for version 3.
try:
internalstate = tuple(x % (2**32) for x in internalstate)
except ValueError as e:
raise TypeError from e
super().setstate(internalstate)
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION)) ## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator. ## -------------------- pickle support ------------------- # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
# longer called; we leave it here because it has been here since random was
# rewritten back in 2001 and why risk breaking something.
def __getstate__(self): # for pickle
return self.getstate() def __setstate__(self, state): # for pickle
self.setstate(state) def __reduce__(self):
return self.__class__, (), self.getstate() ## -------------------- integer methods ------------------- def randrange(self, start, stop=None, step=1, _int=int):
"""Choose a random item from range(start, stop[, step]). This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want. """ # This code is a bit messy to make it fast for the
# common case while still doing adequate error checking.
istart = _int(start)
if istart != start:
raise ValueError("non-integer arg 1 for randrange()")
if stop is None:
if istart > 0:
return self._randbelow(istart)
raise ValueError("empty range for randrange()") # stop argument supplied.
istop = _int(stop)
if istop != stop:
raise ValueError("non-integer stop for randrange()")
width = istop - istart
if step == 1 and width > 0:
return istart + self._randbelow(width)
if step == 1:
raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width)) # Non-unit step argument supplied.
istep = _int(step)
if istep != step:
raise ValueError("non-integer step for randrange()")
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError("zero step for randrange()") if n <= 0:
raise ValueError("empty range for randrange()") return istart + istep*self._randbelow(n) def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
""" return self.randrange(a, b+1) def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
"Return a random int in the range [0,n). Raises ValueError if n==0." random = self.random
getrandbits = self.getrandbits
# Only call self.getrandbits if the original random() builtin method
# has not been overridden or if a new getrandbits() was supplied.
if type(random) is BuiltinMethod or type(getrandbits) is Method:
k = n.bit_length() # don't use (n-1) here because n can be 1
r = getrandbits(k) # 0 <= r < 2**k
while r >= n:
r = getrandbits(k)
return r
# There's an overridden random() method but no new getrandbits() method,
# so we can only use random() from here.
if n >= maxsize:
_warn("Underlying random() generator does not supply \n"
"enough bits to choose from a population range this large.\n"
"To remove the range limitation, add a getrandbits() method.")
return int(random() * n)
rem = maxsize % n
limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
r = random()
while r >= limit:
r = random()
return int(r*maxsize) % n ## -------------------- sequence methods ------------------- def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
try:
i = self._randbelow(len(seq))
except ValueError:
raise IndexError('Cannot choose from an empty sequence') from None
return seq[i] def shuffle(self, x, random=None):
"""Shuffle list x in place, and return None. Optional argument random is a 0-argument function returning a
random float in [0.0, 1.0); if it is the default None, the
standard random.random will be used. """ if random is None:
randbelow = self._randbelow
for i in reversed(range(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = randbelow(i+1)
x[i], x[j] = x[j], x[i]
else:
_int = int
for i in reversed(range(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = _int(random() * (i+1))
x[i], x[j] = x[j], x[i] def sample(self, population, k):
"""Chooses k unique random elements from a population sequence or set. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices). Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample. To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
""" # Sampling without replacement entails tracking either potential
# selections (the pool) in a list or previous selections in a set. # When the number of selections is small compared to the
# population, then tracking selections is efficient, requiring
# only a small set and an occasional reselection. For
# a larger number of selections, the pool tracking method is
# preferred since the list takes less space than the
# set and it doesn't suffer from frequent reselections. if isinstance(population, _Set):
population = tuple(population)
if not isinstance(population, _Sequence):
raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
randbelow = self._randbelow
n = len(population)
if not 0 <= k <= n:
raise ValueError("Sample larger than population or is negative")
result = [None] * k
setsize = 21 # size of a small set minus size of an empty list
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
if n <= setsize:
# An n-length list is smaller than a k-length set
pool = list(population)
for i in range(k): # invariant: non-selected at [0,n-i)
j = randbelow(n-i)
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
selected = set()
selected_add = selected.add
for i in range(k):
j = randbelow(n)
while j in selected:
j = randbelow(n)
selected_add(j)
result[i] = population[j]
return result def choices(self, population, weights=None, *, cum_weights=None, k=1):
"""Return a k sized list of population elements chosen with replacement. If the relative weights or cumulative weights are not specified,
the selections are made with equal probability. """
random = self.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = list(_itertools.accumulate(weights))
elif weights is not None:
raise TypeError('Cannot specify both weights and cumulative weights')
if len(cum_weights) != len(population):
raise ValueError('The number of weights does not match the population')
bisect = _bisect.bisect
total = cum_weights[-1]
return [population[bisect(cum_weights, random() * total)] for i in range(k)] ## -------------------- real-valued distributions ------------------- ## -------------------- uniform distribution ------------------- def uniform(self, a, b):
"Get a random number in the range [a, b) or [a, b] depending on rounding."
return a + (b-a) * self.random() ## -------------------- triangular -------------------- def triangular(self, low=0.0, high=1.0, mode=None):
"""Triangular distribution. Continuous distribution bounded by given lower and upper limits,
and having a given mode value in-between. http://en.wikipedia.org/wiki/Triangular_distribution """
u = self.random()
try:
c = 0.5 if mode is None else (mode - low) / (high - low)
except ZeroDivisionError:
return low
if u > c:
u = 1.0 - u
c = 1.0 - c
low, high = high, low
return low + (high - low) * (u * c) ** 0.5 ## -------------------- normal distribution -------------------- def normalvariate(self, mu, sigma):
"""Normal distribution. mu is the mean, and sigma is the standard deviation. """
# mu = mean, sigma = standard deviation # Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
# Math Software, 3, (1977), pp257-260. random = self.random
while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -_log(u2):
break
return mu + z*sigma ## -------------------- lognormal distribution -------------------- def lognormvariate(self, mu, sigma):
"""Log normal distribution. If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero. """
return _exp(self.normalvariate(mu, sigma)) ## -------------------- exponential distribution -------------------- def expovariate(self, lambd):
"""Exponential distribution. lambd is 1.0 divided by the desired mean. It should be
nonzero. (The parameter would be called "lambda", but that is
a reserved word in Python.) Returned values range from 0 to
positive infinity if lambd is positive, and from negative
infinity to 0 if lambd is negative. """
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word) # we use 1-random() instead of random() to preclude the
# possibility of taking the log of zero.
return -_log(1.0 - self.random())/lambd ## -------------------- von Mises distribution -------------------- def vonmisesvariate(self, mu, kappa):
"""Circular data distribution. mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi. """
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle # Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993. # Thanks to Magnus Kessler for a correction to the
# implementation of step 4. random = self.random
if kappa <= 1e-6:
return TWOPI * random() s = 0.5 / kappa
r = s + _sqrt(1.0 + s * s) while 1:
u1 = random()
z = _cos(_pi * u1) d = z / (r + z)
u2 = random()
if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
break q = 1.0 / r
f = (q + z) / (1.0 + q * z)
u3 = random()
if u3 > 0.5:
theta = (mu + _acos(f)) % TWOPI
else:
theta = (mu - _acos(f)) % TWOPI return theta ## -------------------- gamma distribution -------------------- def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function! Conditions on the parameters are alpha > 0 and beta > 0. The probability distribution function is: x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha """ # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 # Warning: a few older sources define the gamma distribution in terms
# of alpha > -1.0
if alpha <= 0.0 or beta <= 0.0:
raise ValueError('gammavariate: alpha and beta must be > 0.0') random = self.random
if alpha > 1.0: # Uses R.C.H. Cheng, "The generation of Gamma
# variables with non-integral shape parameters",
# Applied Statistics, (1977), 26, No. 1, p71-74 ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv while 1:
u1 = random()
if not 1e-7 < u1 < .9999999:
continue
u2 = 1.0 - random()
v = _log(u1/(1.0-u1))/ainv
x = alpha*_exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
return x * beta elif alpha == 1.0:
# expovariate(1)
u = random()
while u <= 1e-7:
u = random()
return -_log(u) * beta else: # alpha is between 0 and 1 (exclusive) # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle while 1:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
x = p ** (1.0/alpha)
else:
x = -_log((b-p)/alpha)
u1 = random()
if p > 1.0:
if u1 <= x ** (alpha - 1.0):
break
elif u1 <= _exp(-x):
break
return x * beta ## -------------------- Gauss (faster alternative) -------------------- def gauss(self, mu, sigma):
"""Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function. Not thread-safe without a lock around calls. """ # When x and y are two variables from [0, 1), uniformly
# distributed, then
#
# cos(2*pi*x)*sqrt(-2*log(1-y))
# sin(2*pi*x)*sqrt(-2*log(1-y))
#
# are two *independent* variables with normal distribution
# (mu = 0, sigma = 1).
# (Lambert Meertens)
# (corrected version; bug discovered by Mike Miller, fixed by LM) # Multithreading note: When two threads call this function
# simultaneously, it is possible that they will receive the
# same return value. The window is very small though. To
# avoid this, you have to use a lock around all calls. (I
# didn't want to slow this down in the serial case by using a
# lock here.) random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad return mu + z*sigma ## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
## def betavariate(self, alpha, beta):
## # Discrete Event Simulation in C, pp 87-88.
##
## y = self.expovariate(alpha)
## z = self.expovariate(1.0/beta)
## return z/(y+z)
##
## was dead wrong, and how it probably got that way. def betavariate(self, alpha, beta):
"""Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0.
Returned values range between 0 and 1. """ # This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
y = self.gammavariate(alpha, 1.0)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.0)) ## -------------------- Pareto -------------------- def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495 u = 1.0 - self.random()
return 1.0 / u ** (1.0/alpha) ## -------------------- Weibull -------------------- def weibullvariate(self, alpha, beta):
"""Weibull distribution. alpha is the scale parameter and beta is the shape parameter. """
# Jain, pg. 499; bug fix courtesy Bill Arms u = 1.0 - self.random()
return alpha * (-_log(u)) ** (1.0/beta) ## --------------- Operating System Random Source ------------------ class SystemRandom(Random):
"""Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows). Not available on all systems (see os.urandom() for details).
""" def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF def getrandbits(self, k):
"""getrandbits(k) -> x. Generates an int with k random bits."""
if k <= 0:
raise ValueError('number of bits must be greater than zero')
if k != int(k):
raise TypeError('number of bits should be an integer')
numbytes = (k + 7) // 8 # bits / 8 and rounded up
x = int.from_bytes(_urandom(numbytes), 'big')
return x >> (numbytes * 8 - k) # trim excess bits def seed(self, *args, **kwds):
"Stub method. Not used for a system random number generator."
return None def _notimplemented(self, *args, **kwds):
"Method should not be called for a system random number generator."
raise NotImplementedError('System entropy source does not have state.')
getstate = setstate = _notimplemented ## -------------------- test program -------------------- def _test_generator(n, func, args):
import time
print(n, 'times', func.__name__)
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1-t0, 3), 'sec,', end=' ')
avg = total/n
stddev = _sqrt(sqsum/n - avg*avg)
print('avg %g, stddev %g, min %g, max %g\n' % \
(avg, stddev, smallest, largest)) def _test(N=2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0.0, 1.0))
_test_generator(N, lognormvariate, (0.0, 1.0))
_test_generator(N, vonmisesvariate, (0.0, 1.0))
_test_generator(N, gammavariate, (0.01, 1.0))
_test_generator(N, gammavariate, (0.1, 1.0))
_test_generator(N, gammavariate, (0.1, 2.0))
_test_generator(N, gammavariate, (0.5, 1.0))
_test_generator(N, gammavariate, (0.9, 1.0))
_test_generator(N, gammavariate, (1.0, 1.0))
_test_generator(N, gammavariate, (2.0, 1.0))
_test_generator(N, gammavariate, (20.0, 1.0))
_test_generator(N, gammavariate, (200.0, 1.0))
_test_generator(N, gauss, (0.0, 1.0))
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 1.0/3.0)) # Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance. _inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
choices = _inst.choices
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits if __name__ == '__main__':
_test()

python:random

python模块:random的更多相关文章

  1. 【转载】python 模块 - random生成随机数模块

    随机数种子 要每次产生随机数相同就要设置种子,相同种子数的Random对象,相同次数生成的随机数字是完全相同的: random.seed(1) 这样random.randint(0,6, (4,5)) ...

  2. day18 python模块 random time sys os模块

    day18 python   一.random模块     取随机整数 import random print(random.randint(1,2))                 #顾头顾尾 p ...

  3. Python模块random使用详情

    python常用模块目录 1.random.random()#用于生成一个0到1的随机浮点数:0<= n < 1.0 import random mcw = random.random() ...

  4. python模块-random随机数模块

    导入随机数模块import random 1.random.random() 生成[0,1)之间的随机小数 2.random.randint(a,b) 生成[a,b]之间的随机整数 3.random. ...

  5. python模块——random模块(简单验证码实现)

    实现一个简单的验证码生成器 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = "loki" # Usage: 验证 ...

  6. python模块--random

    random主要用于生成随机字符串等,例如登录页面上随机字符串验证. random常用方法: import random print(random.randrange(1, 10)) # 返回1-10 ...

  7. Python全栈--7模块--random os sys time datetime hashlib pickle json requests xml

    模块分为三种: 自定义模块 内置模块 开源模块 一.安装第三方模块 # python 安装第三方模块 # 加入环境变量 : 右键计算机---属性---高级设置---环境变量---path--分号+py ...

  8. 【转】python之random模块分析(一)

    [转]python之random模块分析(一) random是python产生伪随机数的模块,随机种子默认为系统时钟.下面分析模块中的方法: 1.random.randint(start,stop): ...

  9. python 全栈开发,Day27(复习, defaultdict,Counter,时间模块,random模块,sys模块)

    一.复习 看下面一段代码,假如运行结果有问题,那么就需要在每一步计算时,打印一下结果 b = 1 c = 2 d = 3 a = b+c print(a) e = a + d print(e) 执行输 ...

  10. python的random模块(生成验证码)

    python的random模块(生成验证码) random模块常用方法 random.random() #生成0到1之间的随机数,没有参数,float类型 random.randint(1, 3) # ...

随机推荐

  1. POJ3259 Wormholes

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  2. android 开发 View _10_ Path之基本操作

    转载地址:http://www.gcssloop.com/customview/Path_Basic/ 安卓自定义View进阶-Path之基本操作 在上一篇Canvas之图片文字中我们了解了如何使用C ...

  3. python练习题_02

    #1.有两个列表 l1=[11,22,33] l2=[22,33,44] #a.获取内容相同的元素列表 l3=[] for i in l1: if i in l2: l3.append(i) prin ...

  4. js代码技巧

    1.js 中不常用的处理方法 //取整 parseInt(a,10); //Before Math.floor(a); //Before a>>0; //Before ~~a; //Aft ...

  5. Linux网络编程学习(二) ----- 进程控制(第三章)

    1.进程和程序 程序是一个可执行文件,而一个进程是一个执行中的程序实例.一个进程对应于一个程序的执行,进程是动态的,程序是静态的,多个进程可以并发执行同一个程序.比如几个用户可以同时运行一个编辑程序, ...

  6. windows from docker 安装部署spring jar包方法

    1.安装docker for windows,去官网下载就可以了,按照官网安装 2.把jar和dockerfile放在一个目录下(target 目录下) Dockerfile: FROM java:8 ...

  7. ztree带有选项框的树形菜单使用

    1.ztree简介 zTree 是一个依靠 jQuery 实现的多功能 “树插件”.优异的性能.灵活的配置.多种功能的组合是 zTree 最大优点.专门适合项目开发,尤其是 树状菜单.树状数据的Web ...

  8. (八)lambda、列表生成式、字典转list排序

    1.函数返回多个值: 1)函数如果return多个值的话,会把返回的这几个值放在一个元组里面 def say(): num1 = 1 num2 = 2 num3 = 3 return num1,num ...

  9. 【Django】 TemplateDoesNotExist at /HTMLeditor/HTMLeditorHandler/

    TemplateDoesNotExist at /HTMLeditor/HTMLeditorHandler/search/indexes/htmleditor/htmleditor_text.txt ...

  10. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...