Hangover
 

Description

How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.

Input

The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.

Output

For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.

Sample Input

1.00
3.71
0.04
5.19
0.00

Sample Output

3 card(s)
61 card(s)
1 card(s)
273 card(s)

Source

 
  根据题意可建立以下数学模型:
     令 ∑(1/n) >= c
     其中 n∈[2, ∞), c∈[0.01, 5.20]且其精度含小数在内最多3个数字
     给定c 求 n (若c在范围外,则不求解)
 
    分析:
     本质就是变种的调和数列求和(数列中缺少1)
     但调和数列是发散的,不存在准确的求和公式,只有近似公式:
      调和数列 ∑(1/n) ~ ln(n+1) + R
      其中 n∈[1, ∞), R为欧拉常数(R = 0.5772156649...)
 
     但近似公式只有在n非常大的时候误差才可以忽略不计,
     当n很小时,对本题而言误差是不可接受的。
 
     因此本题用常规解法即可
     (由于前n项和是固定的,用打表法也可, 不过题目考核范围较小,打表意义也不大)
#include <iostream>
using namespace std; /*
* 根据调和数列的和值反求项数
* @param sum 目标和值
* return 调和数列项数
*/
int harmonicSeries(double sum); int main(void) {
double sum = 0.0;
while(true) {
cin >> sum;
if(sum < 0.01 || sum > 5.20) {
break;
} int n = harmonicSeries(sum);
cout << n << " card(s)" << endl;
}
return ;
} int harmonicSeries(double sum) {
int n = ;
double curSum = 0.0;
while(curSum < sum) {
curSum += (1.0 / n++);
}
return n - ; // n从2开始因此项数-1, 最后一次求和多了一次n++也要-1, 因此共-2
}

POJ1003 – Hangover (基础)的更多相关文章

  1. [POJ1003]Hangover

    [POJ1003]Hangover 试题描述 How far can you make a stack of cards overhang a table? If you have one card, ...

  2. POJ-1003&1004

    这两题比较简单,就不做分析了,描述下题目,就上代码吧. [题目描述] 1003,其实就是求这个方程的最小n:1/2 + 1/3 + 1/4 + ... + 1/(n + 1) >= c: 100 ...

  3. Hangover[POJ1003]

    Hangover Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 121079   Accepted: 59223 Descr ...

  4. 【POJ1003】Hangover(二分搜索)

    直接用库函数二分即可. #include <iostream> #include <cstring> #include <cstdlib> #include < ...

  5. 《ACM国际大学生程序设计竞赛题解Ⅰ》——基础编程题

    这个专栏开始介绍一些<ACM国际大学生程序设计竞赛题解>上的竞赛题目,读者可以配合zju/poj/uva的在线测评系统提交代码(今天zoj貌似崩了). 其实看书名也能看出来这本书的思路,就 ...

  6. (转载)ACM训练计划,先过一遍基础再按此拼搏吧!!!!

    ACM大量习题题库 ACM大量习题题库 现在网上有许多题库,大多是可以在线评测,所以叫做Online Judge.除了USACO是为IOI准备外,其余几乎全部是大学的ACM竞赛题库. USACO ht ...

  7. java基础集合经典训练题

    第一题:要求产生10个随机的字符串,每一个字符串互相不重复,每一个字符串中组成的字符(a-zA-Z0-9)也不相同,每个字符串长度为10; 分析:*1.看到这个题目,或许你脑海中会想到很多方法,比如判 ...

  8. node-webkit 环境搭建与基础demo

    首先去github上面下载(地址),具体更具自己的系统,我的是windows,这里只给出windows的做法 下载windows x64版本 下载之后解压,得到以下东西 为了方便,我们直接在这个目录中 ...

  9. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

随机推荐

  1. CCF关于NOIP竞赛程序提交的管理规则

    在NOIP复赛中,NOI各省组织单位必须严格遵循CCF<关于NOIP数据提交格式的说明>的规范在竞赛结束后规定时间内向CCF提交本赛区所有参赛选手的程序. 为竞赛的公平以及赛后按时完成竞赛 ...

  2. Xenserver7.6修改root密码

    一:重启xenserver服务器 进入此界面时,先用上下建随便动下,解除4S倒计时,后按e键

  3. GitHub入门与实践 读书笔记二:Git的导入

    1.诞生背景 Linux的创始人Linus Torvalds 在2005年开发了Git的原型程序,后随着众多开发者的共同努力,现在他已经被大量的程序员采用. 2.什么是版本管理 版本管理:管理软件在开 ...

  4. jquery mCustomScrollbar 滚动条宽度的设置

    一.项目使用 $("#iscroll-1, #tree_box, .work, .item1, .item2, .item3, .item4").mCustomScrollbar( ...

  5. Linux系统-tcpdump常用抓包命令

    主要语法 过滤主机/IP: tcpdump -i eth1 host 172.16.7.206 抓取所有经过网卡1,目的IP为172.16.7.206的网络数据 过滤端口:  tcpdump -i e ...

  6. 1159 Palindrome

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 68562   Accepted: 23869 Desc ...

  7. 自动化测试-6.selenium的css定位

    前言 大部分人在使用selenium定位元素时,用的是xpath定位,因为xpath基本能解决定位的需求.css定位往往被忽略掉了,其实css定位也有它的价值,css定位更快,语法更简洁.这一篇css ...

  8. webView 获取内容高度不准确的原因是因为你设置了某个属性

    不管是UIWebView 还是 WKWebView 这里 获取js属性 获取高度的方法 我就不一一细说了 ,本文最主要不说这个 ,网上有太多的方法 我最不摘几个 CGFloat webViewHeig ...

  9. Mysql 杀死sleep进程

    查询数据库当前设置的最大连接数:查看mysql数据库连接数.并发数相关信息  show global variables like '%max_connections%'; 查看mysql连接数:my ...

  10. javascript 运算符优先级

    JavaScript 运算符优先级(从高到低) https://github.com/xhlwill/blog/issues/16 今天把js函数转换为python 函数时,发现在js运算符优先级这边 ...