设f[i]是以i为开头的好子序列的个数

那么有$f[i]=\sum\limits_{j=i+a[i]+1}^{N+1}{f[j]*C_{j-i-1}^{a[i]}}$(设f[N+1]=1)就是以i为开头选出一个好子数组的每种情况*再把它拼到后面的一个好子序列的数量

随便用什么方法预处理一下组合数就行了

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e3+,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} ll f[maxn],c[maxn][maxn];
int a[maxn],N; int main(){
int i,j,k;
N=rd();
for(i=;i<=N;i++) a[i]=rd(); c[][]=c[][]=;
for(i=;i<=N;i++){
for(j=;j<=i;j++){
if(j) c[i][j]=(c[i-][j-]+c[i-][j])%P;
else c[i][j]=;
}
} for(i=N;i;i--){
if(a[i]<=||i+a[i]>N) continue;
int s=;
for(j=N;j>=i+a[i]+;j--){
f[i]=(f[i]+c[j-i-][a[i]]*f[j])%P;
}
f[i]=(f[i]+c[N-i][a[i]])%P;
}
ll ans=;
for(i=;i<=N;i++) ans+=f[i],ans%=P;
printf("%d\n",ans);
return ;
}

cf1000D Yet Another Problem On a Subsequence (dp)的更多相关文章

  1. D. Yet Another Problem On a Subsequence 解析(DP)

    Codeforce 1000 D. Yet Another Problem On a Subsequence 解析(DP) 今天我們來看看CF1000D 題目連結 題目 略,請直接看原題 前言 這題提 ...

  2. D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)

    D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...

  3. POJ 1458 Common Subsequence DP

    http://poj.org/problem?id=1458 用dp[i][j]表示处理到第1个字符的第i个,第二个字符的第j个时的最长LCS. 1.如果str[i] == sub[j],那么LCS长 ...

  4. CodeForces - 1000D:Yet Another Problem On a Subsequence (DP+组合数)

    The sequence of integers a1,a2,…,aka1,a2,…,ak is called a good array if a1=k−1a1=k−1 and a1>0a1&g ...

  5. Common Subsequence(dp)

    Common Subsequence Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 951  Solved: 374 Description A subs ...

  6. CodeForces 163A Substring and Subsequence dp

    A. Substring and Subsequence 题目连接: http://codeforces.com/contest/163/problem/A Description One day P ...

  7. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  8. Educational Codeforces Round 9 D. Longest Subsequence dp

    D. Longest Subsequence 题目连接: http://www.codeforces.com/contest/632/problem/D Description You are giv ...

  9. hdu-4991 Ordered Subsequence(dp+树状数组)

    题目链接: Ordered Subsequence Time Limit: 4000/2000 MS (Java/Others)     Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树

    这次我们来搞一个很新奇的知识点:克鲁斯卡尔重构树.它也是一种图,是克鲁斯卡尔算法求最小生成树的升级版首先看下面一个问题:BZOJ3545 Peaks. 在Bytemountains有N座山峰,每座山峰 ...

  2. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

  3. Linux查看日志常用命令

    1.动态循环查看文件内容 tail  -n  10  test.log   查询日志尾部最后10行的日志; tail -n +10 test.log    查询10行之后的所有日志; head -n ...

  4. 【译】高级指南-深入JSX

    title: 高级指南-深入JSX date: 2017-4-5 17:13:09 --- 深入JSX 从根本上来讲,JSX 仅仅是提供 React.createElement(component, ...

  5. django通用权限控制框架

    在web项目中根据不同的用户肯定会限制其不同的权限,利用以下模块可以满足日常几乎所有的权限控制 permission_hook.py  # 自定义权限控制,必须返回True/false  ,True表 ...

  6. jenkins中配置svn 出现absolute path is not allowed

    代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处. 想用jenkins作自动化部署tomcat. svn代码已经checkout到本地目录了(/ ...

  7. 002-打开文件管理规范-20190406.bat

    rem 002-打开文件管理规范-20190406.bat start /max https://www.cnblogs.com/delphixx/p/10652763.htmlcopy %~0 C: ...

  8. 5 questions

    1.软件开发中有哪几种过程模型? 2.详细设计有哪几种描述方法? 3.什么是需求分析? 4.软件设计的基本原理包括哪些内容? 5.简述文档在软件工程中的作用? 逸翔.

  9. 第三个spring冲刺第4天

    今天,我们在难度选择方面做了谈论,根据难度选择题目的难易和数量,在计时器方面应该有相应的配合,由此决定难易度,因此,我们要做好谈论,为这个难易度做好准备去编译,以免出现混乱.

  10. Beta之后的想法

    软件工程如果没选实践,单纯在理论课上面对教条化的理论,这些理论都是很有指导意义的,但没有实践课带来的切实的多人团队合作开发项目的实际体会,很难能领会到其中的深意.知行合一,才能发现软件工程里的知识都是 ...