题目描述

轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示

N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示

解法

一开始看到这道题以为是组合数,求\(C^{n-1}_{n+1}\),但是在这个图上可能会出现环,我们需要保证所有的答案都是能够联通所有的点,那么就不能这样做。
那么我们就打一个表,发现答案是斐波那契变形,\(f[i]=f[i-1]\times 3-f[i-2]+2\)。
这道题的公式推导其实是一个生成树计数,其实老实说我真的不会这个东西,但是这篇博客讲的非常非常非常清楚:orz
这道题还需要用到高精度,我的高精度模板是来自网络上的,(不要喷我QwQ)

ac代码

# include <bits/stdc++.h>
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
# define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
inline int gi(){
    int w=0,x=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
struct BigInteger {
    typedef unsigned long long LL;
    static const int BASE = 100000000;
    static const int WIDTH = 8;
    vector<int> s;
    BigInteger& clean(){while(!s.back()&&s.size()>1)s.pop_back(); return *this;}
    BigInteger(LL num = 0) {*this = num;}
    BigInteger(string s) {*this = s;}
    BigInteger& operator = (long long num) {
        s.clear();
        do {
            s.push_back(num % BASE);
            num /= BASE;
        } while (num > 0);
        return *this;
    }
    BigInteger& operator = (const string& str) {
        s.clear();
        int x, len = (str.length() - 1) / WIDTH + 1;
        for (int i = 0; i < len; i++) {
            int end = str.length() - i*WIDTH;
            int start = max(0, end - WIDTH);
            sscanf(str.substr(start,end-start).c_str(), "%d", &x);
            s.push_back(x);
        }
        return (*this).clean();
    }

    BigInteger operator + (const BigInteger& b) const {
        BigInteger c; c.s.clear();
        for (int i = 0, g = 0; ; i++) {
            if (g == 0 && i >= (int)s.size() && i >= (int) b.s.size()) break;
            int x = g;
            if (i < s.size()) x += s[i];
            if (i < b.s.size()) x += b.s[i];
            c.s.push_back(x % BASE);
            g = x / BASE;
        }
        return c;
    }
    BigInteger operator - (const BigInteger& b) const {
        assert(b <= *this);
        BigInteger c; c.s.clear();
        for (int i = 0, g = 0; ; i++) {
            if (g == 0 && i >= s.size() && i >= b.s.size()) break;
            int x = s[i] + g;
            if (i < b.s.size()) x -= b.s[i];
            if (x < 0) {g = -1; x += BASE;} else g = 0;
            c.s.push_back(x);
        }
        return c.clean();
    }
    BigInteger operator * (const BigInteger& b) const {
        int i, j; LL g;
        vector<LL> v(s.size()+b.s.size(), 0);
        BigInteger c; c.s.clear();
        for(i=0;i<s.size();i++) for(j=0;j<b.s.size();j++) v[i+j]+=LL(s[i])*b.s[j];
        for (i = 0, g = 0; ; i++) {
            if (g ==0 && i >= v.size()) break;
            LL x = v[i] + g;
            c.s.push_back(x % BASE);
            g = x / BASE;
        }
        return c.clean();
    }
    BigInteger operator / (const BigInteger& b) const {
        assert(b > 0);
        BigInteger c = *this;
        BigInteger m;
        for (int i = s.size()-1; i >= 0; i--) {
            m = m*BASE + s[i];
            c.s[i] = bsearch(b, m);
            m -= b*c.s[i];
        }
        return c.clean();
    }
    BigInteger operator % (const BigInteger& b) const {
        BigInteger c = *this;
        BigInteger m;
        for (int i = s.size()-1; i >= 0; i--) {
            m = m*BASE + s[i];
            c.s[i] = bsearch(b, m);
            m -= b*c.s[i];
        }
        return m;
    }
    int bsearch(const BigInteger& b, const BigInteger& m) const{
        int L = 0, R = BASE-1, x;
        while (1) {
            x = (L+R)>>1;
            if (b*x<=m) {if (b*(x+1)>m) return x; else L = x;}
            else R = x;
        }
    }
    BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
    BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
    BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
    BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
    BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;}

    bool operator < (const BigInteger& b) const {
        if (s.size() != b.s.size()) return s.size() < b.s.size();
        for (int i = s.size()-1; i >= 0; i--)
            if (s[i] != b.s[i]) return s[i] < b.s[i];
        return false;
    }
    bool operator >(const BigInteger& b) const{return b < *this;}
    bool operator<=(const BigInteger& b) const{return !(b < *this);}
    bool operator>=(const BigInteger& b) const{return !(*this < b);}
    bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}
    bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
};
ostream& operator << (ostream& out, const BigInteger& x) {
    out << x.s.back();
    for (int i = x.s.size()-2; i >= 0; i--) {
        char buf[20];
        sprintf(buf, "%08d", x.s[i]);
        for (int j = 0; j < strlen(buf); j++) out << buf[j];
    }
    return out;
}
istream& operator >> (istream& in, BigInteger& x) {
    string s;
    if (!(in >> s)) return in;
    x = s;
    return in;
}
# define N 105
BigInteger f[N];
int main(){
    int n = gi ();
    f[1]=1; f[2]=5;
    for (int i=3;i<=n;i++) f[i]=f[i-1]*3-f[i-2]+2;
    cout<<f[n]<<endl;
    return 0;
}

[luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】的更多相关文章

  1. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  2. HDU1250 高精度斐波那契数列

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. poj3070 求斐波那契数列第n项 ——矩阵快速幂

    题目:http://poj.org/problem?id=3070 用矩阵快速幂加速递推. 代码如下: #include<iostream> #include<cstdio> ...

  4. [BSGS算法]纯水斐波那契数列

    学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只 ...

  5. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  6. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  7. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  8. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  9. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

随机推荐

  1. How to Enable TLS 1.2 on Windows Server 2008 R2 and IIS 7.5

    Nowadays there is an SSL vulnerability called POODLE discovered by Google team in SSLv3 protocol. So ...

  2. assert_param函数的用法

    在STM32的固件库和提供的例程中,到处都可以见到assert_param()的使用.如果打开任何一个例程中的stm32f10x_conf.h文件,就可以看到实际上assert_param是一个宏定义 ...

  3. iOS开发简记(2):自定义tabbar

    tabbar是放在APP底部的控件.常见的APP都使用tabbar来进行功能分类的管理,比如微信.QQ等等. 小程需要一个特殊一点的tabbar,要求突显中间的那个按钮,让中间按钮特别显眼,从而引导用 ...

  4. Sql_连接查询中on筛选与where筛选的区别

    sql中的连接查询分为3种, cross join,inner join,和outer join ,  在 cross join和inner join中,筛选条件放在on后面还是where后面是没区别 ...

  5. Mysql读写分离方案-MySQL Proxy环境部署记录

    Mysql的读写分离可以使用MySQL Proxy和Amoeba实现,其实也可以使用MySQL-MMM实现读写分离的自动切换.MySQL Proxy有一项强大功能是实现"读写分离" ...

  6. 《Linux内核设计与实现》第七章读书笔记

    第七章.中断和中断处理 7.1中断 中断使得硬件得以发出通知给处理器.中断随时可以产生,内核随时可能因为新来到的中断而被打断. 不同的设备对应的中断不同,而每个中断都通过一个唯一的数字标志.操作系统给 ...

  7. Android之JSON格式数据解析

    查看原文:http://blog.csdn.net/hantangsongming/article/details/42234293 JSON:JavaScript 对象表示法(JavaScript ...

  8. Lucene源码

    看Lucene源码必须知道的基本概念 终于有时间总结点Lucene,虽然是大周末的,已经感觉是对自己的奖励,毕竟只是喜欢,现在的工作中用不到的.自己看源码比较快,看英文原著的技术书也很快.都和语言有很 ...

  9. Online Resource Mapping for SDN Network Hypervisors using Machine Learning

    发表时间:2016 一些定义: self-configuring networks: FlowVisor: FlowVisor是建立在OpenFlow之上的网络虚拟化工具,它可以将物理网络划分成多个逻 ...

  10. mybatis集成redis

    系统原生集成的Ehcache, 但是监控需要(version 2.7),Ehcache Monitor http://www.ehcache.org/documentation/2.7/operati ...