题目链接

Luogu 4294

(我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷)

题解

这道题是【斯坦纳树】的经典例题。斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个)点是【关键点】,要求选择一些边使这些点在同一个联通块内,同时要求所选的边的边权和最小。

怎么解决斯坦纳树问题?……其实,就是一种状压DP。

\(dp[i][j]\)表示以i号节点为根,当前状态为j(j的二进制中已经与i连通的点对应位置为1)。

这个“以i为根”是哪来的呢?其实i可以是联通块中任意一个点,没有额外限制,只是引入这个i就可以DP了。

当根i不改变时(即合并两个都包含i的联通块)状态转移方程是:

\[dp[i][j] = \min_{s \in j}\{dp[i][s] + dp[i][\complement_js] - val[i]\}
\]

(\(val[i]\)表示本题中i号点的权值,减去一个是因为\(dp[i][s]\)和\(dp[i][\complement_js]\)中都含有i号点的权值,要防止“加重了”)

当根改变时(即在原有联通块中加入一个新节点i并设置为根,要求i、k相邻):

\[dp[i][j] = \min\{dp[k][j] + val[i]\}
\]

第一个状态转移方程有顺序,可以直接DP;而第二个状态转移方程没有明显顺序,但可以按照最短路的SPFA算法“DP”(神奇!)。

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <queue>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int INF = 0x3f3f3f3f;
int n, m, K, root, f[101][1111], a[101], ans[11][11];
bool inq[101];
typedef pair<int, int> par;
typedef pair<par, int> rec;
#define fi first
#define se second
#define mp make_pair
#define num(u) (u.fi * m + u.se)
rec pre[101][1111];
const int dx[] = {0, 0, -1, 1};
const int dy[] = {1, -1, 0, 0};
queue<par> que; bool legal(par u){
return u.fi >= 0 && u.se >= 0 && u.fi < n && u.se < m;
}
void spfa(int now){
while(!que.empty()){
par u = que.front();
que.pop();
inq[num(u)] = 0;
for(int d = 0; d < 4; d++){
par v = mp(u.fi + dx[d], u.se + dy[d]);
int nu = num(u), nv = num(v);
if(legal(v) && f[nv][now] > f[nu][now] + a[nv]){
f[nv][now] = f[nu][now] + a[nv];
if(!inq[nv]) inq[nv] = 1, que.push(v);
pre[nv][now] = mp(u, now);
}
}
}
}
void dfs(par u, int now){
if(!pre[num(u)][now].se) return;
ans[u.fi][u.se] = 1;
int nu = num(u);
if(pre[nu][now].fi == u) dfs(u, now ^ pre[nu][now].se);
dfs(pre[nu][now].fi, pre[nu][now].se);
} int main(){ read(n), read(m);
memset(f, 0x3f, sizeof(f));
for(int i = 0, tot = 0; i < n; i++)
for(int j = 0; j < m; j++){
read(a[tot]);
if(!a[tot]) f[tot][1 << (K++)] = 0, root = tot;
tot++;
}
for(int now = 1; now < (1 << K); now++){
for(int i = 0; i < n * m; i++){
for(int s = now & (now - 1); s; s = now & (s - 1))
if(f[i][now] > f[i][s] + f[i][now ^ s] - a[i]){
f[i][now] = f[i][s] + f[i][now ^ s] - a[i];
pre[i][now] = mp(mp(i / m, i % m), s);
}
if(f[i][now] < INF)
que.push(mp(i / m, i % m)), inq[i] = 1;
}
spfa(now);
}
write(f[root][(1 << K) - 1]), enter;
dfs(mp(root / m, root % m), (1 << K) - 1);
for(int i = 0, tot = 0; i < n; i++){
for(int j = 0; j < m; j++)
if(!a[tot++]) putchar('x');
else putchar(ans[i][j] ? 'o' : '_');
enter;
} return 0;
}

Luogu 4294 [WC2008]游览计划 | 斯坦纳树的更多相关文章

  1. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

  2. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  3. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  4. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  5. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  6. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  9. luogu P4294 [WC2008]游览计划

    LINK:游览计划 斯坦纳树例题. 斯坦纳树是这样一类问题:带权无向图上有K个关键点 求出包含这K个点的最小生成树. 也就是说 求最小生成树 但是 并不是整张图 仅限于K个点. 可以发现我们利用克鲁斯 ...

随机推荐

  1. Java 面试题 == 和 equals 的区别

    int和Integer的区别 1.Integer是int的包装类,int则是java的一种基本数据类型 2.Integer变量必须实例化后才能使用,而int变量不需要 3.Integer实际是对象的引 ...

  2. ruby安装及升级

    在centos6.x下执行上面的"gem install redis"操作可能会报错,坑很多!默认yum安装的ruby版本是1.8.7,版本太低,需要升级到ruby2.2以上,否则 ...

  3. LVS+Keepalived 高可用环境部署记录(主主和主从模式)

    之前的文章介绍了LVS负载均衡-基础知识梳理, 下面记录下LVS+Keepalived高可用环境部署梳理(主主和主从模式)的操作流程: 一.LVS+Keepalived主从热备的高可用环境部署 1)环 ...

  4. 第八次Scrum meeting

    第八次Scrum  meeting 任务及完成度: 成员 12.29 12.30 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(99%) 任务1114-1:完成对网页数 ...

  5. 《Linux内核分析》实践4

    <Linux内核分析> 实践四--ELF文件格式分析 20135211李行之 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格 ...

  6. 20135316王剑桥Linux内核学习记笔记第七周

    20135316王剑桥<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 一.可执行程序是怎么得来的? 编译 ...

  7. 广商博客冲刺第二天new

    队名:雷锋队 队员:叶子鹏 王佳宁 张奇聪 张振演 曾柏树 项目:广商博客(嵌入APP) 执笔人:王佳宁 第一天沖刺傳送門 第三天沖刺傳送門 今天主要是写需求分析,在经过组员的热烈地讨论,需求分析如下 ...

  8. 关于hash冲突的解决

    分离链接法:public class SeparateChainingHashTable<AnyType>{ private static final int DEFAULT_TABLE_ ...

  9. 无符号整型 unsigned int、unsigned long、usigned long long、size_t 比较和格式控制

    位数比较 由于数据的长度和平台相关,所以基于 64 位系统比较. Windows Linux unsigned int 32 bits/4294967295 32 bits unsigned long ...

  10. org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure The last packet sent succ

    数据库 没有开启  连接失败 org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause ...