动态规划法(四)0-1背包问题(0-1 Knapsack Problem)
继续讲故事~~
转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了。这天晚上,妈妈正在耐心地帮丁丁收拾行李。家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编号、重要、价值如下表所示:
妈妈想要在袋子所能承受的范围内,使得行李的价值最大,并且每件行李只能选择带或者不带。这下妈妈可犯难了,虽然收拾行李不在话下,但是想要解决这个问题,那就不是她的专长了。于是,她把这件事告诉了丁丁。
丁丁听了,想起了几天前和小连一起解决的子集和问题(subset sum problem),他觉得这个背包问题(其实是0-1背包问题)和子集和问题有很多类似之处,应该也是用动态规划法来解决。有个这个想法,他就立马拿出稿纸开始推演起来:
假设背包总的承受重要为W, 总的行李j件数为n,行李的重量列表为w, 价值的列表为v。 假设用dp(i,j)表示用前i个物体,总重要不超过j千克,且价值最大的情况。则有以下情况:
- 若第i件行李的重要w[i] > j, 则不考虑第i件行李,即dp(i,j)=dp(i-1,j).
- 若第i件行李的重要w[i] <= j, 则有两种情况: 一种不放入第i件行李,则dp(i,j)=dp(i-1,j); 另一种情况,放入第i件行李,则dp(i,j)=d(i-1, j-w[i])+v[i]。 应该选取两者之间的最大值,即dp(i,j)=max{dp(i-1,j), dp(i-1, j-w[i])+v[i]}。
该问题的子结构有了。那么,接下来,只需要考虑初始值即可:
对于任意的i,j, 有dp(i,0)=dp(0,j)=0.
这样他就完整地描述了该背包问题的算法。于是,他在自己的电脑上迅速地写下了如下的Python代码:
# dynamic programming in 0-1 Knapsack Problem
import numpy as np
# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
# create (n+1)*(W+1) table initialized with all 0
dp = np.array([[0]*(W+1)]*(n+1))
# using DP to solve 0-1 Knapsack Problem
for i in range(1, n+1):
for j in range(1, W+1):
# if ith item's weight is bigger than j, then do nothing
if w[i-1] > j:
dp[i,j] = dp[i-1, j]
else: # compare the two situations: putt ith item in or not
dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])
return dp[n][W] # maximum value of 0-1 Knapsack Problem
# test
W = 20
w = (1, 2, 5, 6, 7, 9)
v = (1, 6, 18, 22, 28, 36)
n = len(w)
t = Knapsack_01(n, W, w, v)
print('max value : %s'%t)
输出结果如下:
max value : 76
最大的价值是得到了,可是应该选取哪几件行李的?丁丁想到了子集和问题,选取行李即相当于选取价值集合的一个子集,使得它们的和为最大价值。于是,代码就变成了:
# dynamic programming in 0-1 Knapsack Problem
import numpy as np
# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
# create (n+1)*(W+1) table initialized with all 0
dp = np.array([[0]*(W+1)]*(n+1))
# using DP to solve 0-1 Knapsack Problem
for i in range(1, n+1):
for j in range(1, W+1):
# if ith item's weight is bigger than j, then do nothing
if w[i-1] > j:
dp[i,j] = dp[i-1, j]
else: # compare the two situations: putt ith item in or not
dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])
return dp[n][W] # maximum value of 0-1 Knapsack Problem
# using DP to solve subset sum problem
def isSubsetSum(v, n, max_value):
# The value of subset[i, j] will be
# true if there is a subset of
# set[0..j-1] with sum equal to i
subset = np.array([[True]*(max_value+1)]*(n+1))
# If sum is 0, then answer is true
for i in range(0, n+1):
subset[i, 0] = True
# If sum is not 0 and set is empty,
# then answer is false
for i in range(1, max_value+1):
subset[0, i] = False
# Fill the subset table in bottom-up manner
for i in range(1, n+1):
for j in range(1, max_value+1):
if j < v[i-1]:
subset[i, j] = subset[i-1, j]
else:
subset[i, j] = subset[i-1, j] or subset[i-1, j-v[i-1]]
if subset[n, max_value]:
sol = []
# using backtracing to find the solution
i = n
while i >= 0:
if subset[i, max_value] and not subset[i-1, max_value]:
sol.append(v[i-1])
max_value -= v[i-1]
if max_value == 0:
break
i -= 1
return sol
else:
return []
def main():
# test
W = 20
w = (1, 2, 5, 6, 7, 9)
v = (1, 6, 18, 22, 28, 36)
n = len(w)
max_value = Knapsack_01(n, W, w, v)
sol = isSubsetSum(v, n, max_value)
items = [v.index(i) for i in sol]
print('Max value : %s'%max_value)
print('Chosen items: %s'%items)
main()
输出结果如下:
Max value : 76
Chosen items: [5, 3, 2]
因此,在妈妈的这个问题中,能达到的最大价值为76, 应该选取第2,3,5件行李。
解决该问题后,丁丁立马把结果和解答的过程告诉了妈妈。妈妈虽然没有听懂,但是确信这就是正确答案,同时也深深地为自己的儿子感到自豪,只是,心里总是有点不舍。她语重心长地对丁丁说道:“大城市不比我们乡下,要时刻注意自己的安全,同时,也不要过分炫耀自己的能力,要谦虚做人,谨慎行事。”丁丁点点了,其实,他也舍不得离开家,离开妈妈,但是,毕竟他想要去看看外面的世界~~
未完待续~~
注意:本人现已开通两个微信公众号: 用Python做数学(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~
动态规划法(四)0-1背包问题(0-1 Knapsack Problem)的更多相关文章
- 0-1背包问题(0-1 knapsack problem)
0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S ...
- Java实现动态规划法求解0/1背包问题
摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...
- 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列
0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...
- 蓝桥杯 0/1背包问题 (java)
今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...
- 四、C# 5.0 新特性——Async和Await使异步编程更简单
一.引言 .NET 4.5 的推出,对于C#又有了新特性的增加--就是C#5.0中async和await两个关键字,这两个关键字简化了异步编程,之所以简化了,还是因为编译器给我们做了更多的工作,下面就 ...
- 0/1 knapsack problem
Problem statement Given n items with size Ai and value Vi, and a backpack with size m. What's the ma ...
- 【opencv学习笔记四】opencv3.4.0图形用户接口highgui函数解析
在笔记二中我们已经知道了,在highgui文件夹下的正是opencv图形用户接口功能结构,我们这篇博客所说的便是D:\Program Files\opencv340\opencv\build\incl ...
- c#学习<四>:C#2.0、C#3.0
委托的演变 委托(C#1.0) 委托可看作是只定义了一个方法的接口,将委托的实例看作实现了这个接口的一个对象. 委托的执行要满足4个条件: 1. 声明委托类型 ...
- 对背包问题(Knapsack Problem)的算法探究
对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...
随机推荐
- NFS服务简介与配置
NFS简介 NFS特点 NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源 在NFS的应用中, ...
- 2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)
传送门 题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax ...
- drf5 版本和认证组件
开发项目是有多个版本的 随着项目的更新,版本就越来越多.不可能新的版本出了,以前旧的版本就不进行维护了 那我们就需要对版本进行控制,这个DRF框架也给我们提供了一些封装好的版本控制方法 版本控制组件 ...
- 程序中使用now()函数对性能的影响
这两天从某平台的慢查询日志中发现了一些很简单的,原本执行时间在0.01-0.03s的SQL,慢查询日志中记录的执行时间在2s左右. 排查后发现,表设计及索引建设均没有什么问题.但是SQL语句中使用了n ...
- bzoj3637(lct)
又一次把lct写炸了,硬着头皮终于改对了 #include<iostream> #include<cstring> #include<cstdio> #includ ...
- 使用pyinstaller打包python小程序(没有使用第三方模块)
准备: 1,xxx.py程序文件 2,自定义的图标文件:xxx.ico 图标文件应该包含常见的多分辨率格式,以便适应在不同场合显示,不能是单一图片. 你可以用专用的软件处理生成图标,不过少量的图标生产 ...
- Interview Common Sample Codes
1. Quick Sort: int partition(int A[], int p, int r) { int x = A[r]; // Pivot element int i = p - 1; ...
- Vue学习笔记八:v-for,v-if,v-show指令
目录 v-for指令:遍历 HTML和效果图 v-for讲解 v-if和v-show:创建,删除,显示,隐藏 HTML和效果图 v-if和v-show的原理 v-for指令:遍历 HTML和效果图 有 ...
- cad.net DeepCloneObjects WasErased
/// <summary> /// 克隆图元到块表记录 /// </summary> /// <param name="objId">id数组& ...
- JavaScript 交换数组元素位置的几种方式
前言 交换数组元素位置是开发项目中经常用到的场景,总结下用过的几种方式. 第三方变量 最基础的方式,创建一个变量作为中转. let temp = array[index1]; array[index1 ...