Description

题库链接

初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双。已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋。有 \(m\) 次操作,每次包含两个数 \(r_i\) , \(x_i\) 代表来了 \(x_i\) 个 \(r_i\) 号脚的人。 \(x_i\) 为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。

\(1\leq n\leq 200,000,1\leq m\leq 500,000\)

Solution

用 \(\text{Hall}\) 定理以及贪心的思想,容易得到 \(\forall l,r\in[1,n],l\leq r\)

\[\sum_{i=l}^rx_i\leq k(r+d-l+1)\]

移项,得到

\[\sum_{i=l}^r(x_i-k)\leq k\times d\]

显然只要有 \((x_i-k)\) 最大子段和 \(\leq k\times d\) 。线段树维护即可。

Code

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 200000+5; int n, m, k, d, x, r;
struct node {
ll mx, l, r, sum;
node (ll _mx = 0, ll _l = 0, ll _r = 0, ll _sum = 0) {
mx = _mx, l = _l, r = _r, sum = _sum;
}
node operator + (const node &b) const {
node ans;
ans.l = max(l, sum+b.l); ans.r = max(b.r, b.sum+r);
ans.sum = sum+b.sum; ans.mx = max(r+b.l, max(mx, b.mx));
return ans;
}
} ;
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
node key[N<<2];
void build(int o, int l, int r) {
if (l == r) {key[o] = node(-k, -k, -k, -k); return; }
int mid = (l+r)>>1;
build(lr(o), l, mid), build(rr(o), mid+1, r);
key[o] = key[lr(o)]+key[rr(o)];
}
void modify(int o, int l, int r, int loc, int val) {
if (l == r) {
ll t = key[o].sum+val;
key[o] = node(t, t, t, t);
return;
}
int mid = (l+r)>>1;
if (loc <= mid) modify(lr(o), l, mid, loc, val);
else modify(rr(o), mid+1, r, loc, val);
key[o] = key[lr(o)]+key[rr(o)];
}
} T; void work() {
scanf("%d%d%d%d", &n, &m, &k, &d);
T.build(1, 1, n);
while (m--) {
scanf("%d%d", &r, &x);
T.modify(1, 1, n, r, x);
puts(T.key[1].mx <= 1ll*k*d ? "TAK" : "NIE");
}
}
int main() {work(); return 0; }

[POI 2009]Lyz的更多相关文章

  1. 解题:POI 2009 Lyz

    题面 板板讲的霍尔定理 霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻.放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段 ...

  2. 解题:POI 2009 Fire Extinguishers

    题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我 ...

  3. 解题:POI 2009 Ticket Inspector

    题面 看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz 设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益.然后就是那种很常见的枚举前一个结 ...

  4. 解题:POI 2009 TAB

    题面 这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=.=. 然而正解似乎不需要哈希,就像这样↓ ;i& ...

  5. 【BZOJ 1115】【POI 2009】石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<c ...

  6. 【Nim 游戏】 学习笔记

    前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...

  7. OAF_文件系列11_实现OAF读写Excel包JXL和POI的区别(概念)

    20150803 Created By BaoXinjian

  8. Java生成excel导出文件(使用poi+JXL)

    1.使用poi生成文件 package com.mi.entity; import java.util.Date; public class Student { private int id; pri ...

  9. Java POI 两种导出方式

    这里面包含了模板导出方法和自定义模板进行导出 package jp.co.syspro.poo.action.hibikoyou; import java.io.ByteArrayOutputStre ...

随机推荐

  1. 1-JRE与JDK等知识

  2. Effective C++ 笔记:条款 32 确定你的public继承塑造出正确的is-a关系

    32 : Make sure public inheritance models "is-a." 0 引言 Inheritance and Object-Oriented Desi ...

  3. 第一次使用zxxbox弹层经历

    一:首先这个插件是基于JQuery的插件,要先导入JQuery,然后再导入这个插件 二:HTML部分 <a href="http://www.jisuapi.com/static/im ...

  4. <fieldset>标签

    <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...

  5. Spring 的配置详解

    Bean元素 Spring创建对象的方式 (1)空参构造方式 (2)静态工厂(了解) (3)实例工厂方式 Bean元素进阶 (1)scope属性 a.singleton (2)生命周期属性 Sprin ...

  6. 7. The British Thached Roof 英国的茅草屋顶

    7. The British Thached Roof 英国的茅草屋顶 (1) The view over a valley of a tiny village with thatchd roof c ...

  7. Postgresql之VACUUM和VACUUM FULL对比

    VACUUM命令存在两种形式,VACUUM和VACUUM FULL,它们之间的区别见如下表格: 无VACUUM VACUUM VACUUM FULL 删除大量数据之后 只是将删除数据的状态置为已删除, ...

  8. python闭包的详细解析

    一.什么是闭包? 如果一个内嵌函数访问外部嵌套函数作用域的变量,并返回这个函数,则这个函数就是闭包 闭包必须满足三个条件: 1. 必须有一个内嵌函数    2. 内嵌函数必须引用外部嵌套函数中的变量  ...

  9. middleware#52

    错误做法 这道题还是挺有意思的,一开始自己的做法是这样的 const app = { fns: [], callback(ctx) { console.log(ctx) }, use(fn) { th ...

  10. vs2008快捷键一览表

    Ctrl+E,D ----             格式化全部代码 Ctrl+K,F ----             格式化选中的代码 CTRL + SHIFT + B          生成解决方 ...