在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。

收起

 

输入

第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)

输出

输出可以容纳的最大价值。

输入样例

3 6
2 5
3 8
4 9

输出样例

14

第一种:dp二维表示
 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int t,n,W;
int v[];
int w[];
int dp[][]; int main()
{
while(cin>>n>>W){
for(int i=;i<n;i++) cin>>w[i]>>v[i];
for(int i=;i<n;i++){
for(int j=;j<=W;j++){
if(j<w[i]) dp[i+][j]=dp[i][j];
else dp[i+][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);
}
}
cout<<dp[n][W]<<endl;
}
return ;
}

第二种:dp一维表示

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int t,n,W;
int v[];
int w[];
int dp[]; int main()
{
while(cin>>n>>W){
for(int i=;i<n;i++) cin>>w[i]>>v[i];
for(int i=;i<n;i++){
for(int j=W;j>=w[i];j--){
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}
cout<<dp[W]<<endl;
}
return ;
}

51Nod 1085 背包问题 (01背包)的更多相关文章

  1. 51NOD 2072 装箱问题 背包问题 01 背包 DP 动态规划

    有一个箱子容量为 V(正整数,0<=V<=20000),同时有 n 个物品(0<n<=30),每个物品有一个体积(正整数). 现在在 n 个物品中,任取若干个装入箱内,使得箱子 ...

  2. 51nod 1085 背包问题

    在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数).求背包能够容纳的最大价值. 收起   输入 第1行,2个 ...

  3. (DP)51NOD 1085 背包问题

    在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数).求背包能够容纳的最大价值. Input 第1行,2个整数 ...

  4. hdu 2955 01背包

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 如果认为:1-P是背包的容量,n是物品的个数,sum是所有物品的总价值,条件就是装入背包的物品的体积和不能 ...

  5. POJ3628:Bookshelf 2【01背包】

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  6. 背包问题(01背包,完全背包,多重背包(朴素算法&&二进制优化))

    写在前面:我是一只蒟蒻~~~ 今天我们要讲讲动态规划中~~最最最最最~~~~简单~~的背包问题 1. 首先,我们先介绍一下  01背包 大家先看一下这道01背包的问题  题目  有m件物品和一个容量为 ...

  7. 51Nod:1085 背包问题

    1085 背包问题  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2--Wn(Wi为 ...

  8. [算法]用java实现0-1背包和部分背包问题

    问题描述: 0-1背包问题,部分背包问题(课本P229)实验要求: (1)实现0-1背包的动态规划算法求解 (2)实现部分背包的贪心算法求解 0-1背包问题代码: public static void ...

  9. 51nod 1086 背包问题 V2 【二进制/多重背包】

    1086 背包问题 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放 ...

随机推荐

  1. LiDAR、LAS、LAS Dataset与点云

    LiDAR Light Detection And Ranging,激光探测及测距,是一种光学遥感技术,使用激光对地球表面的密集采样,产生高精度X.Y.Z测量值. 激光雷达系统的主要硬件组成部分包括一 ...

  2. mysql关联表修改语句

    UPDATE tb_irms_trans_pip2optseg a,`tb_irms_trans_pip` b SET a.district=b.district WHERE a.prop_id=b. ...

  3. monit检测语法

    1.存在性检测 功能:检测文件或者服务不存在时进行相应的动作,默认是重启 语法: IF [DOES] NOT EXIST [[<X>] <Y> CYCLES]    THEN ...

  4. opencv3 图像处理(一)图像缩放( python与c++ 实现)

    opencv3 图像处理 之 图像缩放( python与c++实现 ) 一. 主要函数介绍 1) 图像大小变换 Resize () 原型: void Resize(const CvArr* src,C ...

  5. 使用TensorFlow构建自己的网络

    TensorFlow对我来说,是一个陌生的框架,又很复杂,学起来不是很容易,需要找到合适的方法. 今天从tf.zeros入手,这个函数最简单,但是知道它的源码在哪里吗?后来我发现github上也有很多 ...

  6. oracle按时间创建分区表

    首先明确分区表和表分区的区别:表分区是一种思想,分区表示一种技术实现.当表的大小过G的时候可以考虑进行表分区,提高查询效率,均衡IO.oracle分区表是oracle数据库提供的一种表分区的实现形式. ...

  7. axios 中断请求

    1 <button onclick="test()">click me</button> <script src="https://unpk ...

  8. 【C++类与对象】实验四(二)

    实现画图类 #ifndef GRAPH_H #define GRAPH_H // 类Graph的声明 class Graph { public: Graph(char ch, int n); // 带 ...

  9. nodejs(二)浏览器与服务器连接初探

  10. elk-准备(一)

    一.在搭建elk之前需要做准备工作 1.创建elk用户 groupadd elk -g 1001 useradd elk -m -d /home/elk -s /bin/bash -g 1001 -u ...