#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py
from scipy import linalg as lg
#按标签选择
#通过标签选择多轴 import pandas as pd
import numpy as np dates = pd.date_range('', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print("df:")
print(df)
print('-'*50)
#通过索引选择
print("df.loc[:,['A','B']]")
print(df.loc[:,['A','B']])
#显示标签切片,包括两个端点
print('-'*50)
print("df.loc['20170102':'20170104',['A','B']]")
print(df.loc['':'',['A','B']])
print('-'*50)
#获得标量值 获取m行n列的单个数据值
print("df.loc[dates[0],'A'")
print(df.loc[dates[0],'A'])
#快速访问标量(等同于先前的方法)
print('-'*50)
print("df.at[dates[0],'A']")
print(df.at[dates[0],'A'])#at快速访问单个值;loc访问多指
#通过传递的整数的位置选择 通过下标选择
print("df.iloc[3]")
print(df.iloc[3])
print('-'*50)
#通过整数切片,类似于numpy/python
print("df.iloc[3:5,0:2]")
print(df.iloc[3:5,0:2])#切片
#通过整数位置的列表,类似于numpy/python样式
print("df.iloc[[1,2,4],[0,2]]")
print(df.iloc[[1,2,4],[0,2]])#列表
print("df.iloc[1:3,:]")
print(df.iloc[1:3,:])
print("df.iloc[:,1:3]")
print(df.iloc[:,1:3])
print("df.iloc[1,1]")
print(df.iloc[1,1])
#要快速访问标量(等同于先前的方法)
print("print(df.iat[1,1])")
print(df.iat[1,1])
#布尔索引
#使用单列的值来选择数据
print("df[df.A > 0]")
print(df[df.A > 0][df.B<0])#多条件选择
print("df[df > 0]")
print(df[df > 0])#从满足布尔条件的DataFrame中选择值
#使用isin()方法进行过滤
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
print("df2")
print(df2)
print("============= start to filter =============== ")
print("isin")
print(df2[df2['E'].isin(['two','four'])])

D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
df:
A B C D
2017-01-01 -1.353900 -0.737163 -0.266858 -0.219116
2017-01-02 -2.328935 0.297892 0.244013 0.331435
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
2017-01-04 -2.117530 -0.480186 0.174002 -0.197551
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425
2017-01-06 0.957020 -0.147027 0.125730 -0.643826
--------------------------------------------------
df.loc[:,['A','B']] #loc为原始索引 用键索引 字符索引
A B
2017-01-01 -1.353900 -0.737163
2017-01-02 -2.328935 0.297892
2017-01-03 0.442864 -1.837813
2017-01-04 -2.117530 -0.480186
2017-01-05 -0.312444 -0.958863
2017-01-06 0.957020 -0.147027
--------------------------------------------------
df.loc['20170102':'20170104',['A','B']]
A B
2017-01-02 -2.328935 0.297892
2017-01-03 0.442864 -1.837813
2017-01-04 -2.117530 -0.480186
--------------------------------------------------
df.loc[dates[0],'A'
-1.3539004392106717
--------------------------------------------------
df.at[dates[0],'A']#at快速取值
-1.3539004392106717

--------------------------------------------------
df.iloc[3]#iloc为数字索引
A -2.117530
B -0.480186
C 0.174002
D -0.197551
Name: 2017-01-04 00:00:00, dtype: float64
--------------------------------------------------
df.iloc[3:5,0:2]
A B
2017-01-04 -2.117530 -0.480186
2017-01-05 -0.312444 -0.958863
--------------------------------------------------
df.iloc[[1,2,4],[0,2]]
A C
2017-01-02 -2.328935 0.244013
2017-01-03 0.442864 -0.523082
2017-01-05 -0.312444 0.004229
--------------------------------------------------
df.iloc[1:3,:]
A B C D
2017-01-02 -2.328935 0.297892 0.244013 0.331435
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
--------------------------------------------------
df.iloc[:,1:3]
B C
2017-01-01 -0.737163 -0.266858
2017-01-02 0.297892 0.244013
2017-01-03 -1.837813 -0.523082
2017-01-04 -0.480186 0.174002
2017-01-05 -0.958863 0.004229
2017-01-06 -0.147027 0.125730
--------------------------------------------------
df.iloc[1,1]
0.29789175201181145
--------------------------------------------------
print(df.iat[1,1])#iat快速数字索引取值
0.29789175201181145
--------------------------------------------------
df[df.A > 0]#按照A列的元素大于0 进行筛选取值
A B C D
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
2017-01-06 0.957020 -0.147027 0.125730 -0.643826
--------------------------------------------------
df[df > 0]#保留数据大于0的元素,费大于0的元素为NaN
A B C D
2017-01-01 NaN NaN NaN NaN
2017-01-02 NaN 0.297892 0.244013 0.331435
2017-01-03 0.442864 NaN NaN NaN
2017-01-04 NaN NaN 0.174002 NaN
2017-01-05 NaN NaN 0.004229 NaN
2017-01-06 0.957020 NaN 0.125730 NaN
--------------------------------------------------
df2
A B C D E
2017-01-01 -1.353900 -0.737163 -0.266858 -0.219116 one
2017-01-02 -2.328935 0.297892 0.244013 0.331435 one
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623 two
2017-01-04 -2.117530 -0.480186 0.174002 -0.197551 three
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425 four
2017-01-06 0.957020 -0.147027 0.125730 -0.643826 three
--------------------------------------------------
============= start to filter ===============
isin

df2['E'].isin(['two','four'])
df2[df2['E'].isin(['two','four'])]

#如果E列中的元素在 isin里面 则获取到值
A B C D E
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623 two
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425 four


Process finished with exit code 0

 

pandas取值的更多相关文章

  1. Python数据科学手册-Pandas:数据取值与选择

    Numpy数组取值 切片[:,1:5], 掩码操作arr[arr>0], 花哨的索引 arr[0, [1,5]],Pandas的操作类似 Series数据选择方法 Series对象与一维Nump ...

  2. 告别硬编码,mysql 如何实现按某字段的不同取值进行统计

    上周我突然意识到,我在grafana上写的 sql 语句存在多处硬编码.这篇笔记将记录如何实现没有硬编码的sql语句,以及自学编程过程中如何应对自己的笨拙代码和难题不断的状况. 1.有效但粗笨的硬编码 ...

  3. 如何解决流程开发中SheetRadioButtonList页面取值问题

    分享一个常见的取值问题. 应用场景: SheetRadioButtonList控件,点击其中一项执行事件操作.如果是页面加载的情况下,值就无法取到. 具体原因如下: 我给SheetRadioButto ...

  4. jQuery radio的取值与赋值

    取值: $("input[name='radioName']:checked").val(); 赋值: $("input[name='radioName'][value= ...

  5. python通过函数改变变量取值

    严格讲应该是"通过函数调用,改变引用对象".python中,要区分"变量名"和"对象" 如果是类的对象,是引用类型的,那么可以通过函数调用, ...

  6. jsf初学selectOneMenu 绑定与取值

    jsf 的selectOneMenu 最后生成的<select>标签.这里涉及到一个binding 起初一直不知道是干嘛的,后来参考了其他文章.就相当于在asp.net 中如:<as ...

  7. CYQ.Data 快速开发之UI(赋值、取值、绑定)原理

    昨夜园子猴子问了几个我CYQ.Data使用的小问题,经过简单解答后,他表示“妈妈再也不用担心我的学习",并于事后以资鼓励,希望这框架越走越好. 除了技术上的交流,双方在生活,S上面的问题上也 ...

  8. EditText的inputType常用取值

    最近经过实际试验,总结了InputType几个常用取值表示的含义: 1.none, text, textVisiblePassword: 无任何输入限制 2.textMultiLine: 允许多行输入 ...

  9. jquery select取值,赋值操作

    select">jquery select取值,赋值操作 一.获取Select 获取select 选中的 text : $("#ddlRegType").find( ...

随机推荐

  1. docker执行第一个应用

    概念科普 Docker image:镜像是只读的,镜像中包含有需要运行的文件.镜像用来创建container,一个镜像可以运行多个container:镜像可以通过Dockerfile创建,也可以从Do ...

  2. 看think in java 随笔

    java的方法是运行期动态绑定上去的,可以根据自己真正实例化的类来判断调用哪个方法,比如子类重写了父类方法,会调用子类方法. 而利用final关键字可以让方法不能重写,就可以在编译期就绑定,这样就可以 ...

  3. 上传头像,layui上传图片

    layui上传与bootstrap上传相似,只是不需要下插件, layui自带的已够用 先看一下前台界面,这里是用到的上传头像 先点击开始上传,头像上传至服务器中, 返回json添加至form表单中, ...

  4. Webpack 概念

    概念 webpack 是一个现代的 JavaScript 应用程序的模块打包器(module bundler).当 webpack 处理应用程序时,它会递归地构建一个依赖关系图表(dependency ...

  5. React-性能优化pureComponent

    每当store里有数据更新时,render()函数就会执行,有时候store的更新数据与本组件并没有关系,render()不必执行. 我们可以用shouldComponentUpdate来优化组件. ...

  6. Python爬虫利器二之Beautiful Soup的用法

    上一节我们介绍了正则表达式,它的内容其实还是蛮多的,如果一个正则匹配稍有差池,那可能程序就处在永久的循环之中,而且有的小伙伴们也对写正则表达式的写法用得不熟练,没关系,我们还有一个更强大的工具,叫Be ...

  7. python-批量添加图片水印

    前言: 最近总是被无良公众号和培训机构拷贝文章,他们根本不会给你备注原文出处,这种行为真的让人不高兴,所以计划以后的文章都添加上自己的水印. 话不多说,直接上代码. 一.单张图片添加文字水印 # -* ...

  8. CentOS 6.7下 Samba服务器的搭建与配置(share共享模式)

    https://www.linuxidc.com/Linux/2016-12/138220.htm

  9. Individual P1: Summary

    经过5个小时成功把simple mode写差不多了..orz 也是蛮拼的. 开始毫无头绪,本能地开始从度娘搜索‘c# 单词统计’= =看了两段代码也算是见过c#的人了.差不多花了我1小时的时间. 然后 ...

  10. Linux内核读书笔记第三周 调试

    内核调试的难点在于它不能像用户态程序调试那样打断点,随时暂停查看各个变量的状态. 也不能像用户态程序那样崩溃后迅速的重启,恢复初始状态. 用户态程序和内核交互,用户态程序的各种状态,错误等可以由内核来 ...