朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。

1. 拉格朗日乘子法:

这个问题转换为

其中,称为拉格朗日乘子。

 wikipedia上对拉格朗日乘子法的合理性解释:

 现有一个二维的优化问题:

 我们可以画图来辅助思考。

  

 绿线标出的是约束的点的轨迹。蓝线是的等高线。箭头表示斜率,和等高线的法线平行。从图上可以直观地看到在最优解处,f和g的法线方向刚好相反(或者说叫梯度共线),即

 

 而满足(3)的点同时又是(4)的解。

 

 所以(2)和(4)等价。

 新方程F(x,y)在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y)−c总等于零。

2.KKT条件

 

 其中

 

 上面的推导到此中断一下,我们看另外一个式子:

 

 这里的都就向量,所以去掉了下标k。另外一些博友不明白上式中是怎么推出来的,其实很简单,因为f(x)与变量无关,所以这个等式就是成立的。

 又

 

 联合(7),(8)我们得到

 

 

增广朗日乘子法(Augumented Lagrange Multiplier)是对二次惩罚法(Quadratic Penalty Method)的一种改进,二次惩罚法要求二次惩罚项的系数趋近于无穷(对约束的偏离给予很高的惩罚)。

增广拉格朗日乘子法就是在原来的目标函数上加一个罚函数。罚函数因子的话就是拉格朗日乘子法,乘子就是罚函数法。因为有约束项,所以加上罚函数以后问题的解是不变的。然后就很自然的有了增广拉格朗日函数。求解的方法比如:从一个相对比较小的罚函数因子和选定的初始的乘子出发,在迭代中不断地求出,在把因子调大,同时更新乘子参数使其逼近最优的乘子。然后在罚函数因子变得非常大之前,一般就能把最优解得出来了。
多出一个二次惩罚项会使得算法的收敛速度很快,体现在理论上就是当很小时,每次乘子的更新可以变得很大。而且增广拉格朗日乘子法比拉格朗日乘子法普适性更好,需要的条件更加温和,比如不要求原函数是强凸的,甚至可以是非凸的,而且原函数可以趋近于无穷,而这种条件下,拉格朗日乘子法就无能为力了。究其原因,是因为二次惩罚项具有很好的矫正作用,在原函数非凸的情况下,只要满足一定的条件(二次惩罚项系数足够大),增广拉格朗日函数在最优点处的二阶导是正定的。因此具有严格的局部极小值。

来源:https://www.zhihu.com/question/23424344/answer/39935081

   https://www.zhihu.com/question/23424344/answer/79955670
   http://www.cnblogs.com/zhangchaoyang

拉格朗日乘子法&KKT条件的更多相关文章

  1. 拉格朗日乘子法 - KKT条件 - 对偶问题

    接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...

  2. 关于拉格朗日乘子法和KKT条件

    解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42 ...

  3. 真正理解拉格朗日乘子法和 KKT 条件

        这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如 ...

  4. 拉格朗日乘子法和KKT条件

    拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件 ...

  5. 机器学习笔记——拉格朗日乘子法和KKT条件

    拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...

  6. 重温拉格朗日乘子法和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 第99:真正理解拉格朗日乘子法和 KKT 条件

  8. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  9. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

随机推荐

  1. C#计算两个时间年份月份差

    C#计算两个时间年份月份差 https://blog.csdn.net/u011127019/article/details/79142612

  2. Navigation包中的move_base和amcl实现自动驾驶

    安装功能包: 1.安装导航定位包navigation $ sudo apt-get install ros-indigo-navigation 2.由于导航包在/cmd_val下发布的移动数据加速度会 ...

  3. c#高级编程第七版 学习笔记 第二章 核心c#

    第二章 核心C# 本章内容: 声明变量 变量的初始化和作用域 C#的预定义数据类型 在c#程序中使用条件语句.循环和跳转语句执行流 枚举 名称空间 Main()方法 基本的命令行c#编译器选项 使用S ...

  4. BIOS备忘录之IIC(touchpad)设备

    简述BIOS中对IIC device的支持,以touchpad为例. 信息收集 收集平台的硬件信息: 1. IIC controller number(PCH一般包含多个controller,我们使用 ...

  5. Linux 进程级开启最大文件描述符 调优

    开启最大文件数 系统可以开启的最大文件描述符(可同时开启最多的文件数),最大开启65535,可根据需求进行调优. 查看系统当前可开启最大文件描述符数 ulimit -n [root@localhost ...

  6. 03:open-falcon报警定制

    1.1 配置报警 11111111111111111111

  7. [C++ Primer Plus] 第4章、复合类型(一)程序清单——指针new和delete

    程序清单4.1 #include<iostream> using namespace std; void main(){ ]; yams[]=; yams[]=; yams[]=; ]={ ...

  8. ERROR 1666 (HY000): Cannot execute statement: impossible to write to binary log since statement is in row format and BINLOG_FORMAT = STATEMENT.

    centos7.5 binlog恢复数据失败 问题: mysql> \. /tmp/inc.sql ERROR 1050 (42S01): Table 'new_1' already exist ...

  9. weblogic10补丁升级与卸载

    1.首先将补丁包解压放在weblogic的utils/bsu/cache_dir文件夹下,如果没有该文件夹,则手动创建. 2.回到bsu目录,执行安装命令 C:\Oracle\Middleware\u ...

  10. [转]静态库、动态库,dll文件、lib文件,隐式链接、显式链接

    转自:https://blog.csdn.net/dcrmg/article/details/53427181 静态链接.动态链接 静态库和动态库分别应用在静态链接方式和动态链接方式中,所谓静态链接方 ...