朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。

1. 拉格朗日乘子法:

这个问题转换为

其中,称为拉格朗日乘子。

 wikipedia上对拉格朗日乘子法的合理性解释:

 现有一个二维的优化问题:

 我们可以画图来辅助思考。

  

 绿线标出的是约束的点的轨迹。蓝线是的等高线。箭头表示斜率,和等高线的法线平行。从图上可以直观地看到在最优解处,f和g的法线方向刚好相反(或者说叫梯度共线),即

 

 而满足(3)的点同时又是(4)的解。

 

 所以(2)和(4)等价。

 新方程F(x,y)在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y)−c总等于零。

2.KKT条件

 

 其中

 

 上面的推导到此中断一下,我们看另外一个式子:

 

 这里的都就向量,所以去掉了下标k。另外一些博友不明白上式中是怎么推出来的,其实很简单,因为f(x)与变量无关,所以这个等式就是成立的。

 又

 

 联合(7),(8)我们得到

 

 

增广朗日乘子法(Augumented Lagrange Multiplier)是对二次惩罚法(Quadratic Penalty Method)的一种改进,二次惩罚法要求二次惩罚项的系数趋近于无穷(对约束的偏离给予很高的惩罚)。

增广拉格朗日乘子法就是在原来的目标函数上加一个罚函数。罚函数因子的话就是拉格朗日乘子法,乘子就是罚函数法。因为有约束项,所以加上罚函数以后问题的解是不变的。然后就很自然的有了增广拉格朗日函数。求解的方法比如:从一个相对比较小的罚函数因子和选定的初始的乘子出发,在迭代中不断地求出,在把因子调大,同时更新乘子参数使其逼近最优的乘子。然后在罚函数因子变得非常大之前,一般就能把最优解得出来了。
多出一个二次惩罚项会使得算法的收敛速度很快,体现在理论上就是当很小时,每次乘子的更新可以变得很大。而且增广拉格朗日乘子法比拉格朗日乘子法普适性更好,需要的条件更加温和,比如不要求原函数是强凸的,甚至可以是非凸的,而且原函数可以趋近于无穷,而这种条件下,拉格朗日乘子法就无能为力了。究其原因,是因为二次惩罚项具有很好的矫正作用,在原函数非凸的情况下,只要满足一定的条件(二次惩罚项系数足够大),增广拉格朗日函数在最优点处的二阶导是正定的。因此具有严格的局部极小值。

来源:https://www.zhihu.com/question/23424344/answer/39935081

   https://www.zhihu.com/question/23424344/answer/79955670
   http://www.cnblogs.com/zhangchaoyang

拉格朗日乘子法&KKT条件的更多相关文章

  1. 拉格朗日乘子法 - KKT条件 - 对偶问题

    接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...

  2. 关于拉格朗日乘子法和KKT条件

    解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42 ...

  3. 真正理解拉格朗日乘子法和 KKT 条件

        这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如 ...

  4. 拉格朗日乘子法和KKT条件

    拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件 ...

  5. 机器学习笔记——拉格朗日乘子法和KKT条件

    拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...

  6. 重温拉格朗日乘子法和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 第99:真正理解拉格朗日乘子法和 KKT 条件

  8. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  9. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

随机推荐

  1. Linux基础命令---lpr打印文件

    lpr lpr指令用来打印文件,如果没有指定文件名,那么从标准输入读取内容.CUPS提供了许多设置默认目标的方法.首先查询“LPDEST”和“PRINTER”环境变量.如果没有设置,则使用lpopti ...

  2. 多条件搜索优化sql

    SELECT ctm.* FROM crawltaskmanage ctm,urlmanage um WHERE (ctm.status='0' AND um.`urlId`=ctm.`urlId`) ...

  3. Json的转换

    package com.utils; import java.io.IOException; import java.util.List; import org.codehaus.jackson.Js ...

  4. Chrome保存整个网页为图片(终极解决方案!)

    打开需要保存为图片的网页 然后按F12,接着按Ctrl+Shift+P 在红框内输入full 点击下面的“Capture full size screenshot”就可以保存整个网页为图片了

  5. CSS 初知

    CSS 初知 举例 人 { 身高:175cm; 体重:70kg; 肤色:黄色 } 描述 CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通 ...

  6. jQuery 自执行函数

    jQuery 自执行函数 // 为了避免三方名冲突可将全局变量封装在自执行函数内 (function (arg) { var status = 1; arg.extend({ 'xsk': funct ...

  7. Redis 分布式缓存 Java 框架

    为什么要在 Java 分布式应用程序中使用缓存? 在提高应用程序速度和性能上,每一毫秒都很重要.根据谷歌的一项研究,假如一个网站在3秒钟或更短时间内没有加载成功,会有 53% 的手机用户会离开. 缓存 ...

  8. js没有函数重载

    上面这道题,要求判断输出的y和z分别为什么 一开始,我选择了2,4 后来发现答案是4,4 意识到js中没有函数重载!!!即使声明了两个同名函数,结果也是后面的函数覆盖了前一个函数. 而且函数声明会提升 ...

  9. Docker应用

    1.tomcat容器创建 docker run -d --name Jdd_tomcat  -p 8081:8080 tomcat [root@localhost etc]# docker run - ...

  10. Codeforces 147 B. Smile House

    题目链接:http://codeforces.com/contest/147/problem/B 求有向图的最小正权环的大小   ${n<=300}$ 非常显然的有${n^{3}log^2}$的 ...