用LCT维护一下删除时间的最大生成树即可。当然也可以线段树分治。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 5010
#define M 500010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
int n,m,x[N+M],y[N+M],v[N+M],cnt;
map<long long,int> f;
struct edge{int op,x,y,del;
}q[M];
struct data{int ch[],fa,rev,s;
}tree[N+M];
void up(int k)
{
tree[k].s=k;
if (v[tree[lson].s]<v[k]) tree[k].s=tree[lson].s;
if (v[tree[rson].s]<v[tree[k].s]) tree[k].s=tree[rson].s;
}
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=;}
bool isroot(int k){return lself!=k&&rself!=k;}
int whichson(int k){return rself==k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
up(fa),up(k);
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(fa)^whichson(k)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=;k;t=k,k=tree[k].fa) splay(k),tree[k].ch[]=t,up(k);}
void makeroot(int k){access(k),splay(k),rev(k);}
int findroot(int k){access(k),splay(k);for (;lson;k=lson) down(k);splay(k);return k;}
void link(int x,int y){makeroot(x);tree[x].fa=y;}
void cut(int x,int y){makeroot(x),access(y),splay(y);tree[y].ch[]=tree[x].fa=;up(y);}
int query(int x,int y){makeroot(x),access(y),splay(y);return tree[y].s;}
void newpoint(int p,int q,int z)
{
cnt++;tree[cnt].s=cnt;v[cnt]=z;
x[cnt]=p,y[cnt]=q;
link(cnt,p),link(cnt,q);
}
int main()
{
freopen("dynamic_graph.in","r",stdin);
freopen("dynamic_graph.out","w",stdout);
n=read(),m=read();
for (int i=;i<=m;i++)
{
q[i].op=read(),q[i].x=read(),q[i].y=read();
if (q[i].x>q[i].y) swap(q[i].x,q[i].y);
if (q[i].op==) f[1ll*q[i].x*m+q[i].y]=i;
if (q[i].op==) q[f[1ll*q[i].x*m+q[i].y]].del=i;
}
cnt=n;
for (int i=;i<=n;i++) tree[i].s=i,v[i]=M;
for (int i=;i<=m;i++) if (q[i].op==&&q[i].del==) q[i].del=M;
for (int i=;i<=m;i++)
if (q[i].op==)
{
if (findroot(q[i].x)!=findroot(q[i].y)) newpoint(q[i].x,q[i].y,q[i].del);
else
{
int t=query(q[i].x,q[i].y);
if (v[t]<q[i].del)
{
cut(t,x[t]),cut(t,y[t]);
newpoint(q[i].x,q[i].y,q[i].del);
}
}
}
else if (q[i].op==)
{
if (findroot(q[i].x)!=findroot(q[i].y)||v[query(q[i].x,q[i].y)]<i) printf("N\n");
else printf("Y\n");
}
fclose(stdin);fclose(stdout);
return ;
}

LOJ121 动态图连通性(LCT)的更多相关文章

  1. LOJ #121. 「离线可过」动态图连通性 LCT维护最大生成树

    这个还是比较好理解的. 你考虑如果所有边构成一棵树的话直接用 LCT 模拟一波操作就行. 但是可能会出现环,于是我们就将插入/删除操作按照时间排序,然后依次进行. 那么,我们就要对我们维护的生成树改变 ...

  2. LOJ 121 「离线可过」动态图连通性——LCT维护删除时间最大生成树 / 线段树分治

    题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #i ...

  3. 【LOJ121】「离线可过」动态图连通性

    [LOJ121]「离线可过」动态图连通性 题面 LOJ 题解 线段树分治的经典应用 可以发现每个边出现的时间是一个区间 而我们每个询问是一个点 所以我们将所有边的区间打到一颗线段树上面去 询问每个叶子 ...

  4. LOJ121 「离线可过」动态图连通性

    思路 动态图连通性的板子,可惜我不会在线算法 离线可以使用线段树分治,每个边按照存在的时间插入线段树的对应节点中,最后再dfs一下求出解即可,注意并查集按秩合并可以支持撤销操作 由于大量使用STL跑的 ...

  5. [LOJ#121]动态图连通性

    [LOJ#121]动态图连通性 试题描述 这是一道模板题. 你要维护一张无向简单图.你被要求加入删除一条边及查询两个点是否连通. 0:加入一条边.保证它不存在. 1:删除一条边.保证它存在. 2:查询 ...

  6. LOJ121 【离线可过】动态图连通性

    题目链接:戳我 [线段树分治版本代码] 这里面的线段树是时间线段树,每一个节点都要开一个vector,记录当前时间区间中存在的边的标号qwq #include<iostream> #inc ...

  7. LOJ#121. 「离线可过」动态图连通性(线段树分治)

    题意 板子题,题意很清楚吧.. Sol 很显然可以直接上LCT.. 但是这题允许离线,于是就有了一个非常巧妙的离线的做法,好像叫什么线段树分治?? 此题中每条边出现的位置都可以看做是一段区间. 我们用 ...

  8. 【LOJ】#121. 「离线可过」动态图连通性

    题解 和BZOJ4025挺像的 就是维护边权是时间的最大生成树 删边直接删 两点未联通时直接相连,两点联通则找两点间边权小的一条边删除即可 代码 #include <bits/stdc++.h& ...

  9. LOJ.121.[离线可过]动态图连通性(线段树分治 按秩合并)

    题目链接 以时间为下标建线段树.线段树每个节点开个vector. 对每条边在其出现时间内加入线段树,即,把这条边按时间放在线段树的对应区间上,会影响\(O(\log n)\)个节点. 询问就放在线段树 ...

随机推荐

  1. Android开发之加载GIF图片

    一.加载GIF图片我用的是GitHub上的开源库:android-gif-drawable,项目地址:https://github.com/koral--/android-gif-drawable 二 ...

  2. FileShare枚举的使用(文件读写锁) - (转载)

    开发过程中,我们往往需要大量与文件交互,但往往会出现很多令人措手不及的意外,所以对普通的C#文件操作做了一次总结,问题大部分如下: 写入一些内容到某个文件中,在另一个进程/线程/后续操作中要读取文件内 ...

  3. HNOI2018做题笔记

    HNOI2018 寻宝游戏(位运算.基数排序) 看到位运算就要按位考虑.二进制下,\(\land 1\)与\(\lor 0\)没有意义的,\(\land 0\)强制这一位变为\(0\),\(\lor ...

  4. WebApi系列~HttpClient的性能隐患 - 转

    最近在进行开发过程中,基于都是接口开发,A站接口访问B接口接口来请求数据,而在这个过程中我们使用的是HttpClient这个框架,当然也是微软自己的框架,性能当前没有问题,但如果你直接使用官方的写法, ...

  5. Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

    函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计 ...

  6. 在 Linux 上搭建IntelliJ IDEA license server服务器

    IntelliJIDEALicenseServer_linux_amd64 ,把该文件传到服务器的某个目录,我是放在了/var/local/software目录下 sudo chmod +x ./In ...

  7. [Spark][python]RDD的collect 作用是什么?

    [Spark][Python]sortByKey 例子的继续 RDD的collect() 作用是什么? “[Spark][Python]sortByKey 例子”的继续 In [20]: mydata ...

  8. [已解决]An unhandled exception occurred while processing the request.

    An unhandled exception occurred while processing the request. InvalidOperationException: The layout ...

  9. Nagios图像绘制插件PNP4Nagios部署和测试

    注:本篇博客Nagios版本Nagios-3.5.1 1. 概述2. 关于PNP4Nagios3. 部署PNP4Nagios3.1 下载PNP4Nagios3.2 编译安装3.3 目录文件说明4. 配 ...

  10. Supervisor (进程管理利器) 使用说明 - 运维笔记

    一.Supervisor简单介绍supervisor是一个 Client/Server模式的系统,允许用户在类unix操作系统上监视和控制多个进程,或者可以说是多个程序.supervisor与laun ...