BZOJ1036[ZJOI2008]树的统计——树链剖分+线段树
题目描述
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
输入
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
输出
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
样例输入
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
样例输出
1
2
2
10
6
5
6
5
16
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m;
int tot;
int num;
int x,y;
char ch[30];
int f[30010];
int d[30010];
int s[30010];
int to[60010];
int mx[240010];
int son[30010];
int top[30010];
int size[30010];
int head[30010];
int next[30010];
int sum[240010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
size[x]=1;
f[x]=fa;
d[x]=d[fa]+1;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x);
size[x]+=size[to[i]];
if(size[to[i]]>size[son[x]])
{
son[x]=to[i];
}
}
}
}
void dfs2(int x,int tp)
{
s[x]=++num;
top[x]=tp;
if(son[x])
{
dfs2(son[x],tp);
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=f[x]&&to[i]!=son[x])
{
dfs2(to[i],to[i]);
}
}
}
void updata(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
mx[rt]=max(mx[rt<<1],mx[rt<<1|1]);
}
void change(int rt,int l,int r,int k,int v)
{
if(l==r)
{
sum[rt]=v;
mx[rt]=v;
return ;
}
int mid=(l+r)>>1;
if(k<=mid)
{
change(rt<<1,l,mid,k,v);
}
else
{
change(rt<<1|1,mid+1,r,k,v);
}
updata(rt);
}
int querysum(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return sum[rt];
}
int mid=(l+r)>>1;
int res=0;
if(L<=mid)
{
res+=querysum(rt<<1,l,mid,L,R);
}
if(R>mid)
{
res+=querysum(rt<<1|1,mid+1,r,L,R);
}
return res;
}
int querymax(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return mx[rt];
}
int mid=(l+r)>>1;
if(R<=mid)
{
return querymax(rt<<1,l,mid,L,R);
}
else if(L>mid)
{
return querymax(rt<<1|1,mid+1,r,L,R);
}
return max(querymax(rt<<1,l,mid,L,R),querymax(rt<<1|1,mid+1,r,L,R));
}
int asksum(int x,int y)
{
int res=0;
while(top[x]!=top[y])
{
if(d[top[x]]<d[top[y]])
{
swap(x,y);
}
res+=querysum(1,1,n,s[top[x]],s[x]);
x=f[top[x]];
}
if(d[x]>d[y])
{
swap(x,y);
}
res+=querysum(1,1,n,s[x],s[y]);
return res;
}
int askmax(int x,int y)
{
int res=-2147483647;
while(top[x]!=top[y])
{
if(d[top[x]]<d[top[y]])
{
swap(x,y);
}
res=max(res,querymax(1,1,n,s[top[x]],s[x]));
x=f[top[x]];
}
if(d[x]>d[y])
{
swap(x,y);
}
res=max(res,querymax(1,1,n,s[x],s[y]));
return res;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1,1);
dfs2(1,1);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
change(1,1,n,s[i],x);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%s",ch);
scanf("%d%d",&x,&y);
if(ch[1]=='H')
{ change(1,1,n,s[x],y);
}
else if(ch[1]=='M')
{
printf("%d\n",askmax(x,y));
}
else
{
printf("%d\n",asksum(x,y));
}
}
}
BZOJ1036[ZJOI2008]树的统计——树链剖分+线段树的更多相关文章
- BZOJ-1036 树的统计Count 链剖线段树(模板)=(树链剖分+线段树)
潇爷昨天刚刚讲完...感觉得还可以...对着模板打了个模板...还是不喜欢用指针.... 1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Lim ...
- 【bzoj1036】树的统计[ZJOI2008]树链剖分+线段树
题目传送门:1036: [ZJOI2008]树的统计Count 这道题是我第一次打树剖的板子,虽然代码有点长,但是“打起来很爽”,而且整道题只花了不到1.5h+,还是一遍过样例!一次提交AC!(难道前 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
随机推荐
- Luogu P3366 【模板】最小生成树
qwq #include<cstdio> #include<algorithm> using namespace std; ]; int n,m; struct abc { i ...
- Redis 参数说明
4. Redis的配置 4.1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程 daemonize no 4.2. 当Redis以守护进程方式运行时,Redis ...
- 如何应用ML的建议-下
正则化与过拟合(highvariance)和欠拟合(highbias)的关系-部分(五) ML的诊断方法-部分(六) 如何采取下一步-部分(七) 部分(五) 从图中可以看出,正则化项可以用来影响模型函 ...
- [转][南京米联ZYNQ深入浅出]第二季更新完毕课程共计16节课
[南京米联]ZYNQ第二季更新完毕课程共计16节课 [第二季ZYNQ] ...
- 【工作感悟】Android 开发者,如何提升自己的职场竞争力?
前言 该文章是笔者参加 Android 巴士线下交流会成都站 的手写讲稿虚拟场景,所以大家将就看一下. 开始 大家好,我是刘世麟,首先感谢安卓巴士为我们创造了这次奇妙的相遇.现场的氛围也让我十分激动. ...
- MVC使用Redis实现分布式锁
使用场景 在做Web项目的时候,有很多特殊的场景要使用到锁 比如说抢红包,资源分配,订单支付等场景 就拿抢红包来说,如果一个红包有5份,同时100个人抢如果没有用到锁的话 100个人同时并发都抢成功, ...
- M1/M2 总结
时光是一列不会回头的列车. 这一学期这么快就过去了,当时刚开始软件工程的那些日子还历历在目.不知道那些如风般过去的日子带给我了什么.然而我又清楚地认识到自己已经改变了. 刚开始软件工程的时候,我对团队 ...
- 非post请求时整个url作为参数传递出现bug
在非post请求使用整个url作为参数传递到后台时会出现url被截断的bug,这时通过encodeURIComponent进行url的编码可以解决.示例如下: <!--参数url-->Ur ...
- Java开发异常
1.org.apache.catalina.LifecycleException 报错信息如下: 警告: Error during context [/wxqhbcloud] restart org. ...
- Leetcode——66.加一
@author: ZZQ @software: PyCharm @file: leetcode66_加一.py @time: 2018/11/29 16:07 要求:给定一个由整数组成的非空数组所表示 ...