Luogu P3388 【模板】割点(割顶)
一道求割点的板子题。还是采用经典的Tarjan算法。
首先大致和Tarjan求强连通分量相似,都是用\(dfn_x\)表示访问到\(x\)的时间(时间戳),\(low_x\)表示通过\(x\)回边能走到的时间戳最小的点的时间戳。
然后我们考虑一下对于一个点如何判断它是否为割点:
- 若这个点是我们人为选择的起始节点(根节点),那么当它的子树个数大于等于两个时肯定就是割点(因为这些子树就无法互相到达)
- 若这个点不是根节点,那么当它的任意一个出点\(y\)的\(low_y>=dfn_x\)时,证明它的儿子无法通过回边回到它前面的点,因此这个点就是割点。
然后注意一下一个经典的细节,在通过回边更新时要写成:
low[now]=min(low[now],dfn[e[i].to]);
而不是
low[now]=min(low[now],low[e[i].to]);
然后引用一下Luogu某大佬taoran的话:
由于此处是一张无向图,我们有双向建了边,导致节点可以回溯到它的父节点;
而如果从它的父节点或其父节点的另一棵子树上有向上很多的返祖边,
这时把子节点的low值赋为父节点的low,就可能导致其low==其父节点low<其父节点dfn,
从而使本该是割点的点被忽视了,答案就少了
然后就当板子题切掉吧。CODE
#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N=100005;
struct edge
{
int to,next;
}e[N<<1];
int head[N],father[N],low[N],dfn[N],cnt,tot,ans,n,m,x,y;
bool cut[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void Tarjan(int now)
{
dfn[now]=low[now]=++tot; int res=0;
for (register int i=head[now];i!=-1;i=e[i].next)
if (!dfn[e[i].to])
{
father[e[i].to]=now; ++res;
Tarjan(e[i].to); low[now]=min(low[now],low[e[i].to]);
if (father[now]&&low[e[i].to]>=dfn[now]) !cut[now]&&(cut[now]=1,++ans);
} else if (e[i].to!=father[now]) low[now]=min(low[now],dfn[e[i].to]);
if (!father[now]&&res>=2) !cut[now]&&(cut[now]=1,++ans);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m);
memset(e,-1,sizeof(e)); memset(head,-1,sizeof(head));
for (i=1;i<=m;++i)
read(x),read(y),add(x,y),add(y,x);
for (i=1;i<=n;++i)
if (!dfn[i]) Tarjan(i);
for (write(ans),putchar('\n'),i=1;i<=n;++i)
if (cut[i]) write(i),putchar(' ');
return 0;
}
Luogu P3388 【模板】割点(割顶)的更多相关文章
- 【Luogu P3388】割点模板
Luogu P3388 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合. 如果某个割点集合只含有一个顶点X(也即{X ...
- Tarjan求割点(割顶) 割边(桥)
割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边 ...
- $割点割顶tarjan$
原题 #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL ...
- 洛谷 P3388 割点(割顶) 题解
题面: 割点性质: 节点 u 如果是割点,当且仅当存在 u 的一个子树,子树中没有连向 u 的祖先的边(返祖边). 换句话说,如果对于一个点u,它的子节点是v,如果low[v] ...
- Tarjan求割点 || Luogu P3388 【模板】割点(割顶)
题面:P3388 [模板]割点(割顶) 题解:无 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- P3388 【模板】割点(割顶)
P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...
- P3388 【模板】割点(割顶) 题解 (Tarjan)
题目链接 P3388 [模板]割点(割顶) 解题思路 最近学的东西太杂了,多写点博客免得自己糊里糊涂的过去了. 这个题求割点,感觉这篇文章写得挺好. 割点是啥?如果去掉这个点之后连通图变成多个不连通图 ...
- 洛谷 P3388 【模板】割点(割顶)(Tarjan)
题目链接 https://www.luogu.org/problemnew/show/P3388 模板题 解题思路 什么是割点? 怎样求割点? dfn :即时间戳,一张图的dfs序(dfs遍历时出现的 ...
- 图论算法-Tarjan模板 【缩点;割顶;双连通分量】
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...
- poj 1144 Network 图的割顶判断模板
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8797 Accepted: 4116 Descripti ...
随机推荐
- MVC与单元测试实践之健身网站(六)-计划的添加与重置
健身计划需要使用者自己定制,没有现成的内容可供选择.本篇就是关于健身计划的添加与重置功能的一部分. 一 功能描述 a) 关于计划的定制,决定以周期的方式,比如有人会以一周为周期,然后安排每周的1.3. ...
- Vue组件的基础用法(火柴)
前面的话 组件(component)是Vue最强大的功能之一.组件可以扩展HTML元素,封装可重用的代码,根据项目需求,抽象出一些组件,每个组件里包含了展现.功能和样式.每个页面,根据自己的需要,使用 ...
- recovery 根据@/cache/recovery/block.map描述从data分区升级
随着android版本的更新,系统固件的大小也越来越大,升级包也越来越大,cache分区已经不够存储update.zip了,所以应用把update.zip下载到data分区,默认情况下data分区是可 ...
- Fedora 29 使用 SCL (Software Collections)
在社区中SCL 由Centos 项目进行维护,所以我们使用CentOS 7 SCL源.CentOS SCL中提供了devtoolset-7-gcc-c++,版本正好为 gcc version 7.3. ...
- xshell 5连接NAT模式的虚拟机
这里简称真实的外部电脑为主机.当虚拟机NAT模式上网时(区别于桥接上网,桥接上网的话,主机和虚拟机可以互访),虚拟机是可以访问主机的,但是由于NAT机制,导致主机不能访问虚拟机,那么如何让主机上的xs ...
- oracle count函数
用来返回查询的行数. 当指定distinct时,不能接order_by_clause: 如果指定表达式,count返回表达式不为空的值: 当指定*号时,它返回所有行,含重复行和空值.count从不返回 ...
- Flask消息闪现
目录 Flask消息闪现 简单的例子 闪现消息的类别 过滤闪现消息 Message Flashing 参考 Flask消息闪现 一个好的应用和用户界面都需要良好的反馈.如果用户得不到足够的反馈,那么应 ...
- 第 15 章 位操作(dualview)
/*----------------------------------- dualview.c -- 位字段和按位运算符 -----------------------------------*/ ...
- February 9th, 2018 Week 6th Friday
Every one of us want to ameliorate our own condition. You can only cure retail but you can prevent w ...
- January 06th, 2018 Week 01st Saturday
In life the most interesting things tend to happen when you are on your way to do something else. 生活 ...