POJ1275 Cashier Employment 二分、差分约束
题意太长
为了叙述方便,将题意中的$0$点看作$1$点,$23$点看做$24$点
考虑二分答案(其实从小到大枚举也是可以的)
设$x_i$是我们选的雇员第$i$小时开始工作的人数,$s_i$是$x_i$的前缀和,又设$p_i$为可以在第$i$小时开始工作的人数,$q_i$表示第$i$小时需要的人数,$mid$为我们二分的答案
那么我们有
$$s_i-s_{i-8} \geq q_i , 8 \leq i \leq 24$$
$$s_i - s_{i+16} \geq q_i - mid , 1 \leq i \leq 7$$
$$s_{i - 1} - s_i \geq -p_i$$
$$s_i - s_{i-1} \geq 0$$(很容易漏掉)
$$s_{24}-s_{0} \geq mid$$
最后一条边的原因是:注意到第二种边中我们强制了$s_{24} = mid$,但是实际跑出来的解有可能$s_{24} \neq mid$,那么第二个式子就很有可能不成立。但是当$mid < s_{24}$时令$mid = s_{24}$时条件显然仍然成立,所以我们只需要让$s_{24} < mid$的时候强制让$s_{24} \geq mid$才行。
直接差分约束求最长路就完了
差分约束有很多细节需要注意,掉了很多次坑qwq(比如每一次的queue都要清空)
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std; inline int read(){
int a = ;
bool f = ;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ '');
c = getchar();
}
return f ? -a : a;
} struct Edge{
int end , upEd , w;
}Ed[*];
int num[] , x[] , maxDis[] , flo[] , head[] , cntEd , preHead[] , preCnt;
queue < int > q;
bool inq[]; inline void addEd(int a , int b , int c){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
Ed[cntEd].w = c;
head[a] = cntEd;
} inline bool check(int mid){
while(!q.empty())q.pop();
memcpy(head , preHead , sizeof(preHead));
cntEd = preCnt;
for(int i = ; i <= ; i++)
addEd(i + , i , num[i] - mid);
addEd( , , mid);
memset(maxDis , -0x3f , sizeof(maxDis));
memset(inq , , sizeof(inq));
memset(flo , , sizeof(flo));
maxDis[] = ;
q.push();
while(!q.empty()){
int t = q.front();
q.pop();
inq[t] = ;
for(int i = head[t] ; i ; i = Ed[i].upEd)
if(maxDis[Ed[i].end] < maxDis[t] + Ed[i].w){
maxDis[Ed[i].end] = maxDis[t] + Ed[i].w;
if((flo[Ed[i].end] = flo[t] + ) >= )
return false;
if(!inq[Ed[i].end]){
inq[Ed[i].end] = ;
q.push(Ed[i].end);
}
}
}
return true;
} int main(){
#ifdef LG
freopen("1275.in" , "r" , stdin);
#endif
for(int T = read() ; T ; T--){
for(int i = ; i <= ; i++)
num[i] = read();
cntEd = ;
memset(head , , sizeof(head));
memset(x , , sizeof(x));
int P = read() , L = , R = P + ;
for(int i = P ; i ; i--)
x[read() + ]++;
for(int i = ; i < ; i++)
addEd(i , i + , );
for(int i = ; i <= ; i++)
addEd(i - , i , num[i]);
for(int i = ; i <= ; i++)
addEd(i , i - , -x[i]);
memcpy(preHead , head , sizeof(head));
preCnt = cntEd;
while(L < R){
int mid = L + R >> ;
check(mid) ? R = mid : L = mid + ;
}
if(L > P)
puts("No Solution");
else
cout << L << endl;
}
return ;
}
POJ1275 Cashier Employment 二分、差分约束的更多相关文章
- hdu 1529 Cashier Employment(差分约束)
Cashier Employment Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- POJ 1275 Cashier Employment(差分约束)
http://poj.org/problem?id=1275 题意 : 一家24小时营业的超市,要雇出纳员,需要求出超市每天不同时段需要的出纳员数,午夜只需一小批,下午需要多些,希望雇最少的人,给出每 ...
- POJ1275 Cashier Employment 【二分 + 差分约束】
题目链接 POJ1275 题解 显然可以差分约束 我们记\(W[i]\)为\(i\)时刻可以开始工作的人数 令\(s[i]\)为前\(i\)个时刻开始工作的人数的前缀和 每个时刻的要求\(r[i]\) ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
- 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)
layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...
- POJ1275 Cashier Employment[差分约束系统 || 单纯形法]
Cashier Employment Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7997 Accepted: 305 ...
- poj1275收银员——差分约束
题目:http://poj.org/problem?id=1275 做的第一道差分约束题... 首先,根据题意得出一些不等关系(f为前缀和雇佣人数): 0 <= f[i] - f[i-1] &l ...
- POJ1275 Cashier Employment(差分约束)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9078 Accepted: 3515 Description A sup ...
- UVA - 11478 Halum 二分+差分约束
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...
随机推荐
- 用css实现圆形波浪效果图
在移动端经常看到一些圆形波浪图来显示金额,刚开始我认为这种效果只能用canvas写的,后来发现用css也可以. 原理:我们都知道让块元素的border-radius:50%会变成圆形,如果少于50%呢 ...
- Asp.Net Core 使用Quartz基于界面画接口管理做定时任务
今天抽出一点点时间来造一个小轮子,是关于定时任务这块的. 这篇文章主要从一下几点介绍: 创建数据库管理表 创建web项目 引入quarzt nuget 包 写具体配置操作,实现定时任务处理 第一步:创 ...
- Java:匿名类,匿名内部类
本文内容: 内部类 匿名类 首发日期 :2018-03-25 内部类: 在一个类中定义另一个类,这样定义的类称为内部类.[包含内部类的类可以称为内部类的外部类] 如果想要通过一个类来使用另一个类,可以 ...
- 阿里云 centos7 django + uWSGI+Nginx + python3 部署攻略
centos7+nginx+python3+django+uwsgi配置Django 项目部署 1.租的服务器(选择centos)的话,需要在阿里云后台控制台开放几个端口,克隆一下已开放的端口,t ...
- JMeter—前置处理器(九)
参考<全栈性能测试修炼宝典JMeter实战>第六章 JMeter 元件详解中第四节前置处理器前置处理器用来处理请求前的一些准备工作,比如参数设置.环境变变量设置等 一.BeanShell ...
- sql server全文索引使用中的小坑 (转载)
一.业务场景 我们在实际生产环境中遇到了这样一种需求,即需要检索一个父子关系的子树数据 估计大家也遇到过类似的场景,最典型的就是省市数据,其中path字段是按层级关系生成的行政区路径: 如果我们已知某 ...
- ADOBE ACROBAT 去除Explorer右键菜单
运行以下命令: regsvr32 -u "C:\Program Files (x86)\Adobe\Acrobat 10.0\Acrobat Elements\ContextMenu64.d ...
- WindowsErrorCode
0 操作成功完成.1 功能错误.2 系统找不到指定的文件.3 系统找不到指定的路径.4 系统无法打开文件.5 拒绝访问.6 句柄无效.7 存储控制块被损坏.8 存储空间不足, 无法处理此命令.9 存储 ...
- Python 使用 xlwings 往 excel中写入一列数据的两种方法
1.准备一个二维列表,然后再range后面不指定任何选项,可以输出该二维列表中数据在一列中显示,如下代码: # -*- coding:utf-8 -*- import xlwings as xw li ...
- 简单Nginx下防跨站、跨目录安全设置,支持PHP 5.3.3以上版本
Nginx下存在跨站和跨目录的问题,跨站和跨目录影响同服务器/VPS上的其他网站. PHP在5.3.3以上已经增加了HOST配置,可以起到防跨站.跨目录的问题. 如果你是PHP 5.3.3以上的版本, ...