原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=5748

树状数组:

/*
对于普通的LIS:
for(i):1~n LIS[i]=1;
if j<i and a[j]<a[i]
LIS[i]=LIS[j]+1
因此可知LIS转移需要两个条件
1.(j<i) 序号必须在i之前
2.(a[i]>a[j]) 值必须比a[i]小
利用树状数组的顺序操作:{查找的都是已经出现的,序号在前(满足条件1)}
对于每一个值,查找它在数组中的排名,再去寻找小于它的排名的最大的LIS(满足条件2)
这里利用到了排名,因为这样可以最大限度地压缩C数组的空间
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max],V[Max],L[Max],C[Max],len;
int lowbit(int x) {return x&(-x);}
int Sum(int x) //求值小于等于x的LIS的最大值
{
int ret=;
while(x>)
{
if(C[x]>ret) ret=C[x];
x-=lowbit(x);
}
return ret;
}
void Add(int x,int d) //值大于等于x的LIS都改为LIS(x)
{
while(x<=len)
{
if(d>C[x]) C[x]=d;
x+=lowbit(x);
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
V[i]=A[i];
}
sort(V+,V++n);
len=unique(V+,V++n)-(V+);
memset(C,,sizeof(C));
int ans=,tmp,xu;
for(int i=;i<=n;i++)
{
xu=lower_bound(V+,V++len,A[i])-(V);
tmp=Sum(xu-)+;
L[i]=tmp;
Add(xu,tmp);
}
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",L[i]);
}
puts("");
}
return ;
}

dp+二分

/*
以dp[x]代表长度为x的LIS,且dp[x]==LIS长度为x的末尾值
每次都往前取dp[x]中最小的一个,当然在保证x尽可能地大的情况下
因为dp[x]是递增的,所以可以二分,l=1,r=当前最长的LIS
求得当前以小于当前a[i]的最长LIS
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max];
int dp[Max];
int LIS[Max];
void Get_lis(int n)
{
int i,j,l,r,mid,ans;
dp[]=A[];
int len=;
for(i=;i<=n;i++)
{
if(dp[len]<A[i]) j=++len;
else
{
l=;r=len;
ans=;
while(l<=r)
{
mid=(l+r)>>;
if(A[i]>dp[mid]&&A[i]<=dp[mid+])
{
ans=mid;break;
}
else if(A[i]>dp[mid]) l=mid+;
else r=mid-;
}
j=ans+;
}
dp[j]=A[i];
LIS[i]=j;
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
dp[i]=;
}
LIS[]=;
Get_lis(n);
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",LIS[i]);
}
puts("");
}
return ;
}

其实还有一种单调队列求最长上升子序列的方法,可是不能用来解这道题

/*
无解。。。
单调队列只能求出总体的LIS长度
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int que[Max];
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n,x,top=;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d",&x);
if(x>que[top]||top==)
{
que[++top]=x;
}
else
{
int l=,r=top,mid,ans;
ans=;
while(l<=r)
{
mid=l+(r-l)/;
if(que[mid]<x) l=mid+;
else r=mid-,ans=mid;
}
que[ans]=x;
}
}
cout<<top<<endl;
}
return ;
}

hdu 5748(求解最长上升子序列的两种O(nlogn)姿势)的更多相关文章

  1. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

  2. HDU 4681 String 最长公共子序列

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4681 题意: 给你a,b,c三个串,构造一个d串使得d是a,b的子序列,并且c是d的连续子串.求d最大 ...

  3. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  4. hdu 5489(LIS最长上升子序列)

    题意:一个含有n个元素的数组,删去k个连续数后,最长上升子序列        /*思路参考GoZy 思路: 4 2 3 [5 7 8] 9 11 ,括号表示要删掉的数, 所以  最长上升子序列  = ...

  5. hdu 5532(最长上升子序列)

    Input The first line contains an integer T indicating the total number of test cases. Each test case ...

  6. Python动态规划求解最长递增子序列(LIS)

    原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列

  7. 算法练习--- DP 求解最长上升子序列(LIS)

    问题描写叙述: 对于2,5,3,1,9,4,6,8,7,找出最长上升子序列的个数 最长上升子序列定义: 对于i<j i,j∈a[0...n] 满足a[i]<a[j] 1. 找出DP公式:d ...

  8. HDU 1159.Common Subsequence-最长公共子序列(LCS)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence

    问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...

随机推荐

  1. js添加广告模块,随页面移动而移动

    实现如下的效果,一般用于广告, 这是通过运动来实现的,大家可以先自己写写,再看看和小编我写的是不是同一个思想 <style> #div1{ width:100px; height:100p ...

  2. Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

    本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Rece ...

  3. NHibernate系列文章九:NHibernate对象二级缓存上

    摘要 NHibernate的二级缓存由SessionFactory管理,由所有Session共享. NHibernate缓存读取顺序: 首先从一级缓存中读取,如果一级缓存对象存在,则读取一级缓存对象并 ...

  4. TCP协议总结--停止等待协议,连续ARQ协议,滑动窗口协议

    前言:在学习tcp三次握手的过程之中,由于一直无法解释tcpdump命令抓的包中seq和ack的含义,就将tcp协议往深入的了解了一下,了解到了几个协议,做一个小结. 先来看看我的问题: 这是用tcp ...

  5. Cacti客户端SNMP的安装和配置

    安装 yum -y install net-snmp 配置 编辑/etc/snmp/snmpd.conf文件 找到下面这句: access  notConfigGroup ""   ...

  6. Fiddler抓包测试App接口

    Fiddler抓包测试App接口 使用Fiddler对手机App应用进行抓包,可以对App接口进行测试,也可以了解App传输中流量使用及请求响应情况,从而测试数据传输过程中流量使用的是否合理. 抓包过 ...

  7. [主页]大牛系列01:Microsoft Research的Johannes Kopf

    时间:2015.11.21 版本:初稿 -------------------------------------------------------------------------------- ...

  8. Node.js 的初步理解

    Node.js 是一个采用C++语言编写的后端的 Javascript 的运行环境, 它使用了 google 的 V8虚拟机来解释和执行代码.Node.js 的有许多有用的内置的模块,比如 http, ...

  9. 编程范式 episode 6 实现stack 栈功能_ to do

    //既然在这里开始,那就在这里结束. 实现stack 功能 ____coding _using subfunction to focus on the main aim of current func ...

  10. spring中Bean的生命周期

    初始化方法:在Bean实例初始化后自动执行的方法 销毁方法:在Bean实例销毁前执行的方法 <bean id="bm" class="springTest.Car& ...