http://www.lydsy.com/JudgeOnline/problem.php?id=1040

简直不能再神的题orz。

蒟蒻即使蒟蒻,完全不会。

一开始看到数据n<=1000000就傻了,简直O(n)的节奏。

翻了题解!做了2天!

蒟蒻的典范!

题解:

我们发现,每个人都有一条边,那么就有n条边,并且一定有一个环并且有且只有一个!

然后环套树的概念就是,一个环旁边插了很多树枝。。

就像这样:

哈哈哈。。。

那么很好。。

如果这只是一颗树,那么太好做了,裸的树形dp,分选这个点和不选这个点更新,d[i][0]+=max(d[j][0], d[j][1]), (i, j); d[i][1]+=d[j][0],(i, j)

可是有环T_T

那么我们就切环!

怎么切合适呢。。。当然从度>1的点和他的孩子切开,然后自己做根(我们设这2个点为x和y)!(其实随便啦,,只要把环破掉就行了)

但是我们要注意。。树形dp的时候注意分情况,因为这2个点是联通的,当然就不能用d[i][1](有x和有y的更新)和不能用d[i][2](有x和有y的更新)。

也就是说吧,d[i][0]和d[i][1]是正常的树形dp,dp[i][2]和d[i][3]是环dp,只要在d[i][3]不更新y这个点就行了。否则就会造成x和y联通。

切的那条边是root的边,然后我们维护一个队列,里面放的是度为0的点(这点多想想。。//sad,,不就是拓扑序吗。。)

开代码什么的自己就理解了(表示抄lydrainbowcat的标程!)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000010;
int vis[N], q[N], front, tail, in[N], son[N], root[N], cnt, bak[N], n;
long long f[N][4], w[N], ans;
void dfs(const int &x) {
vis[x]=x; int i;
for(i=son[x]; !vis[i]; i=son[i]) vis[i]=x;
if(vis[i]==x) {
root[++cnt]=i; bak[son[i]]=1;
--in[son[i]]; son[i]=0;
}
}
void treedp() {
int x, y;
for1(i, 1, n) {
f[i][1]=w[i];
if(!bak[i]) f[i][3]=w[i];
}
for1(i, 1, n) if(!in[i]) q[tail++]=i;
while(front!=tail) {
x=q[front++]; if(front==N) front=0;
y=son[x];
if(!y) continue;
f[y][0]+=max(f[x][1], f[x][0]);
f[y][1]+=f[x][0];
f[y][2]+=max(f[x][2], f[x][3]);
if(!bak[y]) f[y][3]+=f[x][2];
--in[y];
if(!in[y]) { q[tail++]=y; if(tail==N) tail=0; }
}
} int main() {
read(n);
for1(i, 1, n) {
read(w[i]); read(son[i]);
++in[son[i]];
}
for1(i, 1, n) if(!vis[i]) dfs(i);
treedp();
for1(i, 1, cnt) ans+=max(f[root[i]][0], f[root[i]][3]);
printf("%lld", ans);
return 0;
}

Description

Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动 了一场针对Z国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就 像期待有一个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己 最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你 一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支 骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

Input

第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力和他最痛恨的骑士。

Output

应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。

Sample Input

3
10 2
20 3
30 1

Sample Output

30
【数据规模】
对于30%的测试数据,满足N ≤ 10;
对于60%的测试数据,满足N ≤ 100;
对于80%的测试数据,满足N ≤ 10 000。
对于100%的测试数据,满足N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。

HINT

Source

【BZOJ】1040: [ZJOI2008]骑士(环套树dp)的更多相关文章

  1. 【BZOJ】1040: [ZJOI2008]骑士 环套树DP

    [题意]给定n个人的ai和bi,表示第i个人能力值为ai且不能和bi同时选择,求能力值和最大的选择方案.n<=10^6. [算法]环套树DP(基环树) [题解]n个点n条边——基环森林(若干环套 ...

  2. [BZOJ1040][ZJOI2008]骑士(环套树dp)

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5816  Solved: 2263[Submit][Status ...

  3. 【距离GDKOI:44天&GDOI:107天】【BZOJ1040】[ZJOI2008] 骑士 (环套树DP)

    其实已经准备退役了,但GDOI之前还是会继续学下去的!!当成兴趣在学,已经对竞赛失去信心了的样子,我还是回去跪跪文化课吧QAQ 第一道环套树DP...其实思想挺简单的,就把环拆开,分类处理.若拆成开的 ...

  4. BZOJ 1040 [ZJOI2008]骑士 (基环树+树形DP)

    <题目链接> 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的 ...

  5. BZOJ 1040: [ZJOI2008]骑士 基环加外向树

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1190  Solved: 465[Submit][Status] ...

  6. bzoj 1040: [ZJOI2008]骑士 環套樹DP

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1755  Solved: 690[Submit][Status] ...

  7. bzoj 1040: [ZJOI2008]骑士 树形dp

    题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3054  Solved: 1162[Submit][S ...

  8. [BZOJ 1040][ZJOI2008]骑士

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5403  Solved: 2060[Submit][Status ...

  9. Bzoj 1040 [ZJOI2008]骑士 题解

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5368  Solved: 2044[Submit][Status ...

  10. BZOJ 1040: [ZJOI2008]骑士 [DP 环套树]

    传送门 题意:环套树的最大权独立集 一开始想处理出外向树树形$DP$然后找到环再做个环形$DP$ 然后看了看别人的题解其实只要断开环做两遍树形$DP$就行了...有道理! 注意不连通 然后洛谷时限再次 ...

随机推荐

  1. c# 继承,多态,new /overrid 区别, 引用父类的方法

    好久没碰c#了,偶尔需要制作点小工具.为了一个灵活的架构设计,需要对继承/多态有比较深刻的理解. 不料忘得差不多了,好吧,再来回忆下.直接上代码了,如下: using System; using Sy ...

  2. hping3命令

    hping3命令 网络测试 hping是用于生成和解析TCPIP协议数据包的开源工具.创作者是Salvatore Sanfilippo.目前最新版是hping3,支持使用tcl脚本自动化地调用其API ...

  3. C++复数四则运算的实现

    程序主要实现复数的加减乘,数乘,取共轭功能. 将所有函数都定义为了成员函数. 使用库函数atof将字符串转换为浮点型数据. 函数主要难点在于处理输入.由于需要判断输入是选择退出还是继续,所以用字符串来 ...

  4. 转centos65安装简测mysql cluster 7.3.7

    MySQLCluster是sharednothing分布式架构,ndb存储引擎把数据放置于内存中.可以做到无单点故障.由运行于不同服务器上的的多种进程构成,组件包括SQL节点,NDBD数据节点,管理程 ...

  5. IOS多线程(GCD)

    简介 Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式的基础上的.它首次 ...

  6. 读取STL模型

    读取二进制格式的STL模型文件 std::ifstream fin;fin.open(stlFilePath, std::ios::in | std::ios::binary);bool isBina ...

  7. July 29th, Week 31st Friday, 2016

    I am a slow walker, but I never walk backwards. 我走得很慢,但我从来不会后退. I had run very fast, and I had once ...

  8. DRF如何序列化外键的字段

    我觉得在有些应用场景下,这个操作是有用的,因为可以减少一个AJAX的请求,以增加性能. 当然,是二次请求,还是一次传输.这即要考虑用户体验,还要兼顾服务器性能. 一切是有条件的平衡吧.就算是一次传输, ...

  9. hdu 1150 最小点覆盖

    题目大意;有两台机器A和B以及N个需要运行的任务.每台机器有M种不同的模式,而每个任务都恰好在一台机器上运行.如果它在机器A上运行,则机器A需要设置为模式xi,如果它在机器B上运行,则机器A需要设置为 ...

  10. Sqlite实现默认时间为当前时间列的方法(转)

    原文地址: http://blog.csdn.net/derryzhang/article/details/5033209 在SQL Server中,创建表格的时候,对于时间列有时候我们可以根据需要指 ...