进程间通信(IPC)介绍
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。
IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。
以Linux中的C语言编程为例。
一、管道
管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。
1、特点:
它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。
它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。
它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。
一、管道
管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。
1、特点:
它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。
它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。
它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。
2、原型:
#include <unistd.h>
int pipe(int fd[]); // 返回值:若成功返回0,失败返回-1
当一个管道建立时,它会创建两个文件描述符:fd[0]
为读而打开,fd[1]
为写而打开。如下图:
要关闭管道只需将这两个文件描述符关闭即可。
3、例子
单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:
若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0]
)与子进程的写端(fd[1]
);反之,则可以使数据流从子进程流向父进程。
#include<stdio.h>
#include<unistd.h> int main()
{
int fd[]; // 两个文件描述符
pid_t pid;
char buff[]; if(pipe(fd) < ) // 创建管道
printf("Create Pipe Error!\n"); if((pid = fork()) < ) // 创建子进程
printf("Fork Error!\n");
else if(pid > ) // 父进程
{
close(fd[]); // 关闭读端
write(fd[], "hello world\n", );
}
else
{
close(fd[]); // 关闭写端
read(fd[], buff, );
printf("%s", buff);
} return ;
}
二、FIFO
FIFO,也称为命名管道,它是一种文件类型。
1、特点
FIFO可以在无关的进程之间交换数据,与无名管道不同。
FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。
2、原型
#include <sys/stat.h>
// 返回值:成功返回0,出错返回-1
int mkfifo(const char *pathname, mode_t mode);
其中的 mode 参数与open
函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。
当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK
)的区别:
若没有指定
O_NONBLOCK
(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。若指定了
O_NONBLOCK
,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。
3、例子
FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:
write_fifo.c
#include<stdio.h>
#include<stdlib.h> // exit
#include<fcntl.h> // O_WRONLY
#include<sys/stat.h>
#include<time.h> // time int main()
{
int fd;
int n, i;
char buf[];
time_t tp; printf("I am %d process.\n", getpid()); // 说明进程ID if((fd = open("fifo1", O_WRONLY)) < ) // 以写打开一个FIFO
{
perror("Open FIFO Failed");
exit();
} for(i=; i<; ++i)
{
time(&tp); // 取系统当前时间
n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));
printf("Send message: %s", buf); // 打印
if(write(fd, buf, n+) < ) // 写入到FIFO中
{
perror("Write FIFO Failed");
close(fd);
exit();
}
sleep(); // 休眠1秒
} close(fd); // 关闭FIFO文件
return ;
}
read_fifo.c
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<fcntl.h>
#include<sys/stat.h> int main()
{
int fd;
int len;
char buf[]; if(mkfifo("fifo1", ) < && errno!=EEXIST) // 创建FIFO管道
perror("Create FIFO Failed"); if((fd = open("fifo1", O_RDONLY)) < ) // 以读打开FIFO
{
perror("Open FIFO Failed");
exit();
} while((len = read(fd, buf, )) > ) // 读取FIFO管道
printf("Read message: %s", buf); close(fd); // 关闭FIFO文件
return ;
}
在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:
[cheesezh@localhost]$ ./write_fifo
I am process.
Send message: Process 's time is Mon Apr 20 12:37:28 2015
Send message: Process 's time is Mon Apr 20 12:37:29 2015
Send message: Process 's time is Mon Apr 20 12:37:30 2015
Send message: Process 's time is Mon Apr 20 12:37:31 2015
Send message: Process 's time is Mon Apr 20 12:37:32 2015
Send message: Process 's time is Mon Apr 20 12:37:33 2015
Send message: Process 's time is Mon Apr 20 12:37:34 2015
Send message: Process 's time is Mon Apr 20 12:37:35 2015
Send message: Process 's time is Mon Apr 20 12:37:36 2015
Send message: Process 's time is Mon Apr 20 12:37:37 2015
[cheesezh@localhost]$ ./read_fifo
Read message: Process 's time is Mon Apr 20 12:37:28 2015
Read message: Process 's time is Mon Apr 20 12:37:29 2015
Read message: Process 's time is Mon Apr 20 12:37:30 2015
Read message: Process 's time is Mon Apr 20 12:37:31 2015
Read message: Process 's time is Mon Apr 20 12:37:32 2015
Read message: Process 's time is Mon Apr 20 12:37:33 2015
Read message: Process 's time is Mon Apr 20 12:37:34 2015
Read message: Process 's time is Mon Apr 20 12:37:35 2015
Read message: Process 's time is Mon Apr 20 12:37:36 2015
Read message: Process 's time is Mon Apr 20 12:37:37 2015
上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo
的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo
类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:
三、消息队列
消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。
1、特点
消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。
消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。
消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。
2、原型
#include <sys/msg.h>
// 创建或打开消息队列:成功返回队列ID,失败返回-1
int msgget(key_t key, int flag);
// 添加消息:成功返回0,失败返回-1
int msgsnd(int msqid, const void *ptr, size_t size, int flag);
// 读取消息:成功返回消息数据的长度,失败返回-1
int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
// 控制消息队列:成功返回0,失败返回-1
int msgctl(int msqid, int cmd, struct msqid_ds *buf);
在以下两种情况下,msgget
将创建一个新的消息队列:
- 如果没有与键值key相对应的消息队列,并且flag中包含了
IPC_CREAT
标志位。 - key参数为
IPC_PRIVATE
。
函数msgrcv
在读取消息队列时,type参数有下面几种情况:
type == 0
,返回队列中的第一个消息;type > 0
,返回队列中消息类型为 type 的第一个消息;type < 0
,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。
可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)
3、例子
下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。
msg_server.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h> // 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd" // 消息结构
struct msg_form {
long mtype;
char mtext[];
}; int main()
{
int msqid;
key_t key;
struct msg_form msg; // 获取key值
if((key = ftok(MSG_FILE,'z')) < )
{
perror("ftok error");
exit();
} // 打印key值
printf("Message Queue - Server key is: %d.\n", key); // 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid()); // 循环读取消息
for(;;)
{
msgrcv(msqid, &msg, , , );// 返回类型为888的第一个消息
printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
printf("Server: receive msg.mtype is: %d.\n", msg.mtype); msg.mtype = ; // 客户端接收的消息类型
sprintf(msg.mtext, "hello, I'm server %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), );
}
return ;
}
msg_client.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h> // 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd" // 消息结构
struct msg_form {
long mtype;
char mtext[];
}; int main()
{
int msqid;
key_t key;
struct msg_form msg; // 获取key值
if ((key = ftok(MSG_FILE, 'z')) < )
{
perror("ftok error");
exit();
} // 打印key值
printf("Message Queue - Client key is: %d.\n", key); // 打开消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid()); // 添加消息,类型为888
msg.mtype = ;
sprintf(msg.mtext, "hello, I'm client %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), ); // 读取类型为777的消息
msgrcv(msqid, &msg, , , );
printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
return ;
}
四、信号量
信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
1、特点
信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
支持信号量组。
2、原型
最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。
Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。
#include <sys/sem.h>
// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
int semget(key_t key, int num_sems, int sem_flags);
// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
int semop(int semid, struct sembuf semoparray[], size_t numops);
// 控制信号量的相关信息
int semctl(int semid, int sem_num, int cmd, ...);
当semget
创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems
),通常为1; 如果是引用一个现有的集合,则将num_sems
指定为 0 。
在semop
函数中,sembuf
结构的定义如下:
struct sembuf
{
short sem_num; // 信号量组中对应的序号,0~sem_nums-1
short sem_op; // 信号量值在一次操作中的改变量
short sem_flg; // IPC_NOWAIT, SEM_UNDO
}
其中 sem_op 是一次操作中的信号量的改变量:
若
sem_op > 0
,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。若
sem_op < 0
,请求 sem_op 的绝对值的资源。- 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
- 当相应的资源数不能满足请求时,这个操作与
sem_flg
有关。- sem_flg 指定
IPC_NOWAIT
,则semop函数出错返回EAGAIN
。 - sem_flg 没有指定
IPC_NOWAIT
,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:- 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
- sem_flg 指定
若
sem_op == 0
,进程阻塞直到信号量的相应值为0:- 当信号量已经为0,函数立即返回。
- 如果信号量的值不为0,则依据
sem_flg
决定函数动作:- sem_flg指定
IPC_NOWAIT
,则出错返回EAGAIN
。 - sem_flg没有指定
IPC_NOWAIT
,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:- 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
- sem_flg指定
在semctl
函数中的命令有多种,这里就说两个常用的:
SETVAL
:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。IPC_RMID
:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。
3、例子
#include<stdio.h>
#include<stdlib.h>
#include<sys/sem.h> // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, , SETVAL, tmp) == -)
{
perror("Init Semaphore Error");
return -;
}
return ;
} // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} // 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, , IPC_RMID, tmp) == -)
{
perror("Delete Semaphore Error");
return -;
}
return ;
} int main()
{
int sem_id; // 信号量集ID
key_t key;
pid_t pid; // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 创建信号量集,其中只有一个信号量
if((sem_id = semget(key, , IPC_CREAT|)) == -)
{
perror("semget error");
exit();
} // 初始化:初值设为0资源被占用
init_sem(sem_id, ); if((pid = fork()) == -)
perror("Fork Error");
else if(pid == ) /*子进程*/
{
sleep();
printf("Process child: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
}
else /*父进程*/
{
sem_p(sem_id); /*等待资源*/
printf("Process father: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
del_sem(sem_id); /*删除信号量集*/
}
return ;
}
上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。
五、共享内存
共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。
1、特点
共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
因为多个进程可以同时操作,所以需要进行同步。
信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。
2、原型
#include <sys/shm.h>
// 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
int shmget(key_t key, size_t size, int flag);
// 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
void *shmat(int shm_id, const void *addr, int flag);
// 断开与共享内存的连接:成功返回0,失败返回-1
int shmdt(void *addr);
// 控制共享内存的相关信息:成功返回0,失败返回-1
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
当用shmget
函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。
当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat
函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。
shmdt
函数是用来断开shmat
建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。
shmctl
函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID
(从系统中删除该共享内存)。
3、例子
下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。
- 共享内存用来传递数据;
- 信号量用来同步;
- 消息队列用来 在客户端修改了共享内存后 通知服务器读取。
server.c
#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy // 消息队列结构
struct msg_form {
long mtype;
char mtext;
}; // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, , SETVAL, tmp) == -)
{
perror("Init Semaphore Error");
return -;
}
return ;
} // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} // 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, , IPC_RMID, tmp) == -)
{
perror("Delete Semaphore Error");
return -;
}
return ;
} // 创建一个信号量集
int creat_sem(key_t key)
{
int sem_id;
if((sem_id = semget(key, , IPC_CREAT|)) == -)
{
perror("semget error");
exit(-);
}
init_sem(sem_id, ); /*初值设为1资源未占用*/
return sem_id;
} int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
char data[] = "this is server";
struct shmid_ds buf1; /*用于删除共享内存*/
struct msqid_ds buf2; /*用于删除消息队列*/
struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/ // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 创建共享内存
if((shmid = shmget(key, , IPC_CREAT|)) == -)
{
perror("Create Shared Memory Error");
exit();
} // 连接共享内存
shm = (char*)shmat(shmid, , );
if((int)shm == -)
{
perror("Attach Shared Memory Error");
exit();
} // 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 创建信号量
semid = creat_sem(key); // 读数据
while()
{
msgrcv(msqid, &msg, , , ); /*读取类型为888的消息*/
if(msg.mtext == 'q') /*quit - 跳出循环*/
break;
if(msg.mtext == 'r') /*read - 读共享内存*/
{
sem_p(semid);
printf("%s\n",shm);
sem_v(semid);
}
} // 断开连接
shmdt(shm); /*删除共享内存、消息队列、信号量*/
shmctl(shmid, IPC_RMID, &buf1);
msgctl(msqid, IPC_RMID, &buf2);
del_sem(semid);
return ;
}
client.c
#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy // 消息队列结构
struct msg_form {
long mtype;
char mtext;
}; // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
struct msg_form msg;
int flag = ; /*while循环条件*/ // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 获取共享内存
if((shmid = shmget(key, , )) == -)
{
perror("shmget error");
exit();
} // 连接共享内存
shm = (char*)shmat(shmid, , );
if((int)shm == -)
{
perror("Attach Shared Memory Error");
exit();
} // 创建消息队列
if ((msqid = msgget(key, )) == -)
{
perror("msgget error");
exit();
} // 获取信号量
if((semid = semget(key, , )) == -)
{
perror("semget error");
exit();
} // 写数据
printf("***************************************\n");
printf("* IPC *\n");
printf("* Input r to send data to server. *\n");
printf("* Input q to quit. *\n");
printf("***************************************\n"); while(flag)
{
char c;
printf("Please input command: ");
scanf("%c", &c);
switch(c)
{
case 'r':
printf("Data to send: ");
sem_p(semid); /*访问资源*/
scanf("%s", shm);
sem_v(semid); /*释放资源*/
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
msg.mtype = ;
msg.mtext = 'r'; /*发送消息通知服务器读数据*/
msgsnd(msqid, &msg, sizeof(msg.mtext), );
break;
case 'q':
msg.mtype = ;
msg.mtext = 'q';
msgsnd(msqid, &msg, sizeof(msg.mtext), );
flag = ;
break;
default:
printf("Wrong input!\n");
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
}
} // 断开连接
shmdt(shm); return ;
}
注意:当scanf()
输入字符或字符串时,缓冲区中遗留下了\n
,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)
(它只是标准C的扩展),所以我们使用了替代方案:
while((c=getchar())!='\n' && c!=EOF);
参考资料:http://songlee24.github.io/2015/04/21/linux-IPC/
进程间通信(IPC)介绍的更多相关文章
- Android开发之IPC进程间通信-AIDL介绍及实例解析
一.IPC进程间通信 IPC是进程间通信方法的统称,Linux IPC包括以下方法,Android的进程间通信主要采用是哪些方法呢? 1. 管道(Pipe)及有名管道(named pipe):管道可用 ...
- Linux进程间通信(IPC)
序言 linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的. 而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心) ...
- Android进程间通信IPC
一.IPC的说明 IPC是Inter-Process Communication的缩写,含义为进程间通信或跨进程通信,是指两个进程之间进行数据交换的过程. IPC不是Android独有的,任何一个操作 ...
- 进程间通信IPC -- 管道, 队列
进程间通信--IPC(Inter-Process Communication) 管道 from multiprocessing import Pipecon1,con2 = Pipe()管道是不安全的 ...
- [原创]chromium源码阅读-进程间通信IPC.消息的接收与应答
chromium源码阅读-进程间通信IPC.消息的接收与应答 chromium源码阅读-进程间通信IPC.消息的接收与应答 介绍 chromium进程间通信在win32下是通过命名管道的方式实现的 ...
- 进程间通信IPC之--无名管道(pipe)和有名管道(fifo)(转)
进程间通信IPC之--无名管道(pipe)和有名管道(fifo) 2012-01-17 22:41:20 分类: C/C++ 每个进程各自有不同的用户地址空间,任何一个进 程的全局变量在另一个进程中 ...
- 微服务的进程间通信(IPC)
微服务的进程间通信(IPC) 目录 微服务的进程间通信(IPC) 术语 概述 通信视角 APIs 消息格式 RPC REST gRPC 断路器 API通信的健壮性 服务发现 异步消息 概念 消息 消息 ...
- 【windows 操作系统】进程间通信(IPC)简述|无名管道和命名管道 消息队列、信号量、共享存储、Socket、Streams等
一.进程间通信简述 每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进 ...
- Linux进程间通信IPC学习笔记之同步二(SVR4 信号量)
Linux进程间通信IPC学习笔记之同步二(SVR4 信号量)
- Linux进程间通信IPC学习笔记之同步二(Posix 信号量)
Linux进程间通信IPC学习笔记之同步二(Posix 信号量)
随机推荐
- List集合 导出 Excel
public string CreateAdvExcel(IList<DocAdvInfo> lt) { StringBuilder builder = new StringBuilder ...
- HTML5的touch事件
HTML5中新添加了很多事件,但是由于他们的兼容问题不是很理想,应用实战性不是太强,所以在这里基本省略,咱们只分享应用广泛兼容不错的事件,日后随着兼容情况提升以后再陆续添加分享.今天为大家介绍的事件主 ...
- 【实战】初识ListView及提高效率
简介: ListView是手机上最常用的控件之一,几乎所有的程序都会用到,手机屏幕空间有限,当需要显示大量数据的时候,就需要借助ListView来实现,允许用户通过手指上下滑动的方式将屏幕外的数据滚动 ...
- Mac上创建cocos2d-x工程
1.自选版本-下载 http://www.cocos2d-x.org/download 2.解压(自选路径) 3.在cocos2d-x解压目录下新建 Projects 文件夹. 3.打开终端 4.进入 ...
- EJDB 1.1.18 发布,嵌入式JSON数据库
EJDB 1.1.18 增加对 MongoDB 操作符 $and 和 $or 的支持,支持 MongoDB 的 $ 推断操作符,修复了 $fields 提示的bug,提升了查询处理的性能. EJDB ...
- solr与.net系列课程(七)solr主从复制
solr与.net系列课程(七)solr主从复制 既然solr是解决大量数据全文索引的方案,由于高并发的问题,我们就要考虑solr的负载均衡了,solr提供非常简单的主从复制的配置方法,那么下面 ...
- JQuery中动态生成元素的绑定事件(坑死宝宝了)
今天在做项目的时候,遇到了一个前端的问题,坑了我好长时间没有解决,今天就记录于此,也分享给大家. 问题是这样的,首先看看我的界面,有一个初始印象: 下面是操作列所对应的JS代码: { "da ...
- Java Config 下的Spring Test方式
用了三种方式: 1.纯手动取bean: package com.wang.test; import com.marsmother.commission.core.config.MapperConfig ...
- virtualbox 安装ubuntu
1. 下载已经安装好的ubuntu的virtualbox的vdi 下载地址: http://www.osboxes.org/ubuntu/ ubuntu 16.04 Xenial VirtualBox ...
- [翻译]-马丁·福勒-page对象
译者注:这篇文章翻译自马丁·福勒(Martin Flower,对,没错,就是软件教父)官网的一篇文章,原文出处在文底.如果你正在做WEB自动化测试,那么我强烈推荐你看这篇文章.另外透露Martin F ...