svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。

opencv中的svm分类代码,来源于libsvm。

#include "stdafx.h"
#include "opencv2/opencv.hpp"
using namespace cv;
using namespace cv::ml; int main(int, char**)
{
int width = , height = ;
Mat image = Mat::zeros(height, width, CV_8UC3); //创建窗口可视化 // 设置训练数据
int labels[] = { , -, , ,-,,-,,-,- };
Mat labelsMat(, , CV_32SC1, labels); float trainingData[][] = { { , }, { , }, { , }, { , }, { , },
{ , }, { , } , { , } , { , } , { , } };
Mat trainingDataMat(, , CV_32FC1, trainingData); // 创建分类器并设置参数
Ptr<SVM> model =SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR); //核函数 //设置训练数据
Ptr<TrainData> tData =TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); // 训练分类器
model->train(tData); Vec3b green(, , ), blue(, , );
// Show the decision regions given by the SVM
for (int i = ; i < image.rows; ++i)
for (int j = ; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(, ) << j, i); //生成测试数据
float response = model->predict(sampleMat); //进行预测,返回1或-1 if (response == )
image.at<Vec3b>(i, j) = green;
else if (response == -)
image.at<Vec3b>(i, j) = blue;
} // 显示训练数据
int thickness = -;
int lineType = ;
Scalar c1 = Scalar::all(); //标记为1的显示成黑点
Scalar c2 = Scalar::all(); //标记成-1的显示成白点
//绘图时,先宽后高,对应先列后行
for (int i = ; i < labelsMat.rows; i++)
{
const float* v = trainingDataMat.ptr<float>(i); //取出每行的头指针
Point pt = Point((int)v[], (int)v[]);
if (labels[i] == )
circle(image, pt, , c1, thickness, lineType);
else
circle(image, pt, , c2, thickness, lineType); } imshow("SVM Simple Example", image);
waitKey(); }

如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。

Ptr<SVM> svm = SVM::create();    //创建一个分类器
svm->setType(SVM::C_SVC); //设置svm类型

由于opencv中的svm分类算法是根据libsvm改写而来的,libsvm是台湾一学者编写的matlab版本的svm算法,所以参数的设定的也大致相同。svm类型除了C_SVC之外,还有NU_SVC,ONE_CLASS,EPS_SVR,NU_SVR.

还有其它的参数,如

 svm->setKernel(SVM::POLY); //设置核函数;
svm->setDegree(0.5);
svm->setGamma();
svm->setCoef0();
svm->setNu(0.5);
svm->setP();
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , 0.01));
svm->setC(C);

如果前面svm类型选择的不同,后面的参数设置也不同,具体的设置可以了解一下libsvm的参数设置。具体介绍可参照 :libsvm参数说明

setTermCriteria是用来设置算法的终止条件, SVM训练的过程就是一个通过 迭代 方式解决约束条件下的二次优化问题,这里我们指定一个最大迭代次数和容许误差,以允许算法在适当的条件下停止计算

在opencv3中实现机器学习之:利用svm(支持向量机)分类的更多相关文章

  1. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  2. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  3. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  4. 在opencv3中实现机器学习之:利用正态贝叶斯分类

    opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "op ...

  5. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  6. 在opencv3中的机器学习算法练习:对OCR进行分类

    OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...

  7. 【机器学习基础】SVM实现分类识别及参数调优(二)

    前言 实现分类可以使用SVM方法,但是需要人工调参,具体过程请参考here,这个比较麻烦,小鹅不喜欢麻烦,正好看到SVM可以自动调优,甚好! 注意 1.reshape的使用: https://docs ...

  8. python中Scikit-Learn机器学习模块

    Scikit-Learn是基于python的机器学习模块,基于BSD开源许可证.这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护. Scikit-Lea ...

  9. Stanford机器学习---第八讲. 支持向量机SVM

    原文: http://blog.csdn.net/abcjennifer/article/details/7849812 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回 ...

随机推荐

  1. 真机调试出现Could not find Developer Disk Image问题解决办法

    1.升级Xcode 2. 在使用Xcode进行真机调试的时候,有时根据真机的系统不同,会出现could not find developer disk image 错误,这是由于真机系统过高或者过低, ...

  2. Android线程池(二)

    本篇主要介绍Android自带的线程池的管理. 包含开始任务.重新加载.添加删除任务等,示例代码如下: package com.jiao.threadpooltest; import java.uti ...

  3. WPF 自定义控件,在ViewModel里面获取自定义控件的值

    上图: 用户自定义CS里面代码如下: 自定义控件XAML里面的代码如下: 调用用户自定义控件的页面代码如下: CItySelected的属性值就是我们点击确定按钮以后得到的值,通过双向绑定在VIewM ...

  4. 【未解决】eclipse未自动引入maven依赖

    删掉maven本地库,重新编译项目,刷新eclipse后,发现工程上打叉,查看build path,依赖全没有引入,不知为何,暂无解

  5. 调用iframe中父页面/子页面中的JavaScript方法

    今天做公司的内部流程系统,发现一问题.怎么调用iframe外面的方法呢?于是百度了一下,呵呵,把搜索结果摘抄下来. 转自:http://hi.baidu.com/zh_m_zhou/blog/item ...

  6. win7 解决git clone 连接被拒绝—hosts文件过期

      我出现问题的原因是自己修改过 C:\Windows\System32\drivers\etc\HOSTS, 把同事的这个文件拷贝过来后,一切恢复了正常   错误在eclipse中表现为:     ...

  7. Linux 基础知识----shell

    1.file title: #!/bin/bash 2.input: echo $1 echo $2 3.if # ifif [ "$1" = "N" ]the ...

  8. Java NIO入门(二):缓冲区内部细节

    Java NIO 入门(二)缓冲区内部细节 概述 本文将介绍 NIO 中两个重要的缓冲区组件:状态变量和访问方法 (accessor). 状态变量是前一文中提到的"内部统计机制"的 ...

  9. 如何在CALayer设置滤镜

    网上有很多关于CALayer中设置filtes属性的相关资料比如如何设置一个带滤镜的layer,代码如下: NSImage* image = [NSImage imageNamed:@"IM ...

  10. Beeline known issues

    If you use nohup myscript.sh , You beeline scripts may not work, Pay attention to this in your job.