题目链接:http://poj.org/problem?id=3398

这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html

第一种,贪心算法:

贪心算法直接套一个最小支配集模板就可以了,我不能证明这样是正确的,但是能AC

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
using namespace std;
#define N 10007 struct Edge
{
int v,next;
}G[*N]; int fa[N];
int vis[N];
int pos[N],head[N];
int now,tot;
int n,m; void addedge(int u,int v)
{
G[tot].v = v;
G[tot].next = head[u];
head[u] = tot++;
} void DFS(int u)
{
pos[now++] = u;
for(int i=head[u];i!=-;i=G[i].next)
{
int v = G[i].v;
if(!vis[v])
{
vis[v] = ;
fa[v] = u;
DFS(v);
}
}
} int MDS()
{
int s[N] = {};
int set[N] = {};
int ans = ;
for(int i=now-;i>=;i--)
{
int t = pos[i];
if(!s[t])
{
if(!set[fa[t]])
{
set[fa[t]] = ;
ans++;
}
s[t] = ;
s[fa[t]] = ;
s[fa[fa[t]]] = ;
}
}
return ans;
} int main()
{
int n,u,v,i,j;
int op;
while(scanf("%d",&n)!=EOF)
{
tot = ;
now = ;
memset(head,-,sizeof(head));
for(i=;i<n-;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
memset(vis,,sizeof(vis));
memset(fa,-,sizeof(fa));
fa[] = ;
DFS();
int res = MDS();
printf("%d\n",res);
scanf("%d",&op);
if(op == -)
break;
}
return ;
}

第二种,树形DP。因为此时由于一台电脑不能与多台服务器连接,所以直接DP转移求最小支配集有可能不是正确解。

状态设计与上篇的相同,但是注意dp[i][0]的转移方程中,不能有dp[i][1],因为此时该子节点有一个子节点被选入最小支配集,而当前节点也被选入最小支配集,此时该子节点与两个支配集中的点相连,不符合题意。其他转移方式不变。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
using namespace std;
#define N 10007 struct Edge
{
int v,next;
}G[N]; int head[N],tot;
int dp[N][]; void addedge(int u,int v)
{
G[tot].v = v;
G[tot].next = head[u];
head[u] = tot++;
} void MDS_DP(int u,int fa)
{
dp[u][] = ;
dp[u][] = ;
int s = ;
int sum = ;
int inc = Mod;
for(int i=head[u];i!=-;i=G[i].next)
{
int v = G[i].v;
if(v == fa)
continue;
MDS_DP(v,u);
dp[u][] += min(dp[v][],dp[v][]);
if(dp[v][] <= dp[v][])
{
sum += dp[v][];
s = ;
}
else
{
sum += dp[v][];
inc = min(inc,dp[v][]-dp[v][]);
}
if(dp[v][] != Mod && dp[u][] != Mod)
dp[u][] += dp[v][];
else
dp[u][] = Mod;
if(inc == Mod && !s) //i没有子节点
dp[u][] = Mod;
else
{
dp[u][] = sum;
if(!s)
dp[u][] += inc;
}
}
} int main()
{
int n,u,v,i,j;
int op;
while(scanf("%d",&n)!=EOF)
{
tot = ;
memset(head,-,sizeof(head));
for(i=;i<n-;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(i=;i<=n;i++)
for(j=;j<=;j++)
dp[i][j] = Mod;
MDS_DP(,-);
int res = min(dp[][],dp[][]);
printf("%d\n",res);
scanf("%d",&op);
if(op == -)
break;
}
return ;
}

POJ 3398 Perfect Service --最小支配集的更多相关文章

  1. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  2. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  3. POJ 3659 Cell Phone Network(树的最小支配集)(贪心)

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6781   Accepted: 242 ...

  4. poj-3659 Cell Phone Network(最小支配集+贪心)

    http://poj.org/problem?id=3659 Description Farmer John has decided to give each of his cows a cell p ...

  5. 树形dp(最小支配集)

    http://poj.org/problem?id=3659 #include<iostream> #include<cstring> #include<algorith ...

  6. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  7. 求解任意图的最小支配集(Minimun Dominating Set)

    给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合.G的最小控制顶点集合为V的一个子集S∈V:假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V:则最小控制顶点集合 ...

  8. 树形DP求树的最小支配集,最小点覆盖,最大独立集

    一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...

  9. 树形DP 树的最小支配集,最小点覆盖与最大独立集

    最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...

随机推荐

  1. PhpStorm的open in browser怎么修改端口和相对路径

    昨天下班后,在电脑安装phpstorm.xampp安装正常,但是在phpstorm上直接打开网站文件一直报错,一直报错502.我感觉好奇快,怎么会报错呢.后面我用hbuild打开文件,在浏览器显示正常 ...

  2. RabbitMQ与AMQP协议详解

    1. 消息队列的历史 了解一件事情的来龙去脉,将不会对它感到神秘.让我们来看看消息队列(Message Queue)这项技术的发展历史. Message Queue的需求由来已久,80年代最早在金融交 ...

  3. 安装多JDK后,java编译环境和运行环境版本(JDK版本) 不一致解决:

    由于之前安装过JDK1.7 ,现在一个项目是JDK1.5的,那么需要更改了环境变量了,此处不再赘述如何设置JDK 的环境变量了.然后网上找来方法: 在安装多个jdk后,出现了java -version ...

  4. 自定义XML动态配置程序

    概述 1 在做程序开发时,我们往往要用到如下两个基本模块 1> 设置程序的基础参数,如分页的参数.邮件参数等: 2> 在基于表驱动开发时,即把一些判断的逻辑放在表数据中: 2 在这两个基本 ...

  5. 使用Vue编写点击数字小游戏

    使用vue编写一个点击数字计时小游戏,列入你在文本框中输入3,点击开始会生成一个3行3列的表格,表格数据为1-9随机排列,这时候从1开始点击,按顺序点到9,当按正确顺序点击完毕,会提示所用的时间,如果 ...

  6. 收集oracle统计信息

    优化器统计范围: 表统计: --行数,块数,行平均长度:all_tables:NUM_ROWS,BLOCKS,AVG_ROW_LEN:列统计: --列中唯一值的数量(NDV),NULL值的数量,数据分 ...

  7. Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结

    Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结 1. ,免杀技术的用途2 1.1. 病毒木马的编写2 1.2. 软件保护所用的加密产品(比如壳)中,有 ...

  8. STL--向量(vector)

    STL的组成 标准模板库STL关注的重点是泛型数据结构和算法,其关键组成部分是容器(containers).算法(algorithms).迭代器(iterators).函数对象(Function Ob ...

  9. iOS 学习 - 7.限制 TextField 输入字符长度

    #pragma mark -- TextField代理 -(BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange: ...

  10. 读取本地Json文件

    //读取Json文件  地区 //将文件拖到本地  获取json数据 //获取json文件路径 NSString *pathArea=[[NSBundle mainBundle] pathForRes ...