UVA 11992 Fast Matrix Operations (二维线段树)
解法:因为至多20行,所以至多建20棵线段树,每行建一个。具体实现如下,有些复杂,慢慢看吧。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 1000010 struct node
{
int mini,maxi,sum;
int addmark,setmark;
}tree[][*N]; int i; void pushup(int i,int rt)
{
tree[i][rt].sum = tree[i][*rt].sum + tree[i][*rt+].sum;
tree[i][rt].mini = min(tree[i][*rt].mini,tree[i][*rt+].mini);
tree[i][rt].maxi = max(tree[i][*rt].maxi,tree[i][*rt+].maxi);
} void build(int i,int l,int r,int rt)
{
tree[i][rt].sum = tree[i][rt].mini = tree[i][rt].maxi = ;
tree[i][rt].setmark = -;
tree[i][rt].addmark = ;
if(l == r)
return;
int mid = (l+r)/;
build(i,l,mid,*rt);
build(i,mid+,r,*rt+);
pushup(i,rt);
} void pushdown(int i,int l,int r,int rt)
{
if(tree[i][rt].setmark == - && tree[i][rt].addmark == )
return;
int mid = (l+r)/;
if(tree[i][rt].setmark >= )
{
tree[i][*rt].sum = tree[i][rt].setmark*(mid-l+);
tree[i][*rt+].sum = tree[i][rt].setmark*(r-mid);
tree[i][*rt].mini = tree[i][*rt+].mini = tree[i][rt].setmark; //
tree[i][*rt].maxi = tree[i][*rt+].maxi = tree[i][rt].setmark; //
tree[i][*rt].addmark = tree[i][*rt+].addmark = ; //
tree[i][*rt].setmark = tree[i][*rt+].setmark = tree[i][rt].setmark;
tree[i][rt].setmark = -;
}
if(tree[i][rt].addmark > )
{
tree[i][*rt].sum += tree[i][rt].addmark*(mid-l+);
tree[i][*rt+].sum += tree[i][rt].addmark*(r-mid);
tree[i][*rt].maxi += tree[i][rt].addmark; //
tree[i][*rt].mini += tree[i][rt].addmark;
tree[i][*rt+].maxi += tree[i][rt].addmark;
tree[i][*rt+].mini += tree[i][rt].addmark; //
tree[i][*rt].addmark += tree[i][rt].addmark;
tree[i][*rt+].addmark += tree[i][rt].addmark;
tree[i][rt].addmark = ;
}
} void add(int l,int r,int aa,int bb,int val,int rt)
{
if(aa>r||bb<l)
return;
if(aa<=l&&bb>=r)
{
tree[i][rt].addmark += val;
//tree[i][rt].setmark = -1;
tree[i][rt].sum += (r-l+)*val;
tree[i][rt].maxi += val;
tree[i][rt].mini += val;
return;
}
pushdown(i,l,r,rt);
int mid = (l+r)/;
if(aa<=mid)
add(l,mid,aa,bb,val,*rt);
if(bb>mid)
add(mid+,r,aa,bb,val,*rt+);
pushup(i,rt);
} void setval(int l,int r,int aa,int bb,int val,int rt)
{
if(aa>r||bb<l)
return;
if(aa<=l&&bb>=r)
{
tree[i][rt].setmark = val;
tree[i][rt].addmark = ;
tree[i][rt].sum = val*(r-l+);
tree[i][rt].maxi = tree[i][rt].mini = val;
return;
}
pushdown(i,l,r,rt);
int mid = (l+r)/;
if(aa<=mid)
setval(l,mid,aa,bb,val,*rt);
if(bb>mid)
setval(mid+,r,aa,bb,val,*rt+);
pushup(i,rt);
} struct node_ans
{
int sum;
int mini,maxi;
}; node_ans query(int l,int r,int aa,int bb,int rt)
{
node_ans res,ka1,ka2;
if(aa<=l && bb>=r)
{
res.sum = tree[i][rt].sum;
res.maxi = tree[i][rt].maxi;
res.mini = tree[i][rt].mini;
return res;
}
pushdown(i,l,r,rt);
int mid = (l+r)/;
if(bb<=mid)
return query(l,mid,aa,bb,*rt);
else if(aa>mid)
return query(mid+,r,aa,bb,*rt+);
else
{
ka1 = query(l,mid,aa,bb,*rt);
ka2 = query(mid+,r,aa,bb,*rt+);
res.sum = ka1.sum + ka2.sum;
res.maxi = max(ka1.maxi,ka2.maxi);
res.mini = min(ka1.mini,ka2.mini);
return res;
}
} int main()
{
int r,c,m;
int k,zuo;
int x1,y1,x2,y2,val;
int sum,mmax,mmin;
while(scanf("%d%d%d",&r,&c,&m)!=EOF)
{
for(i=;i<=r;i++)
{
build(i,,c,);
}
for(k=;k<m;k++)
{
scanf("%d",&zuo);
if(zuo == )
{
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&val);
for(i=x1;i<=x2;i++)
{
add(,c,y1,y2,val,);
}
}
else if(zuo == )
{
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&val);
for(i=x1;i<=x2;i++)
{
setval(,c,y1,y2,val,);
}
}
else
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
node_ans la;
sum = ;
mmax = -Mod;
mmin = Mod;
for(i=x1;i<=x2;i++)
{
la = query(,c,y1,y2,);
sum += la.sum;
mmax = max(mmax,la.maxi);
mmin = min(mmin,la.mini);
}
printf("%d %d %d\n",sum,mmin,mmax);
}
}
}
}
UVA 11992 Fast Matrix Operations (二维线段树)的更多相关文章
- UVA 11992 - Fast Matrix Operations(段树)
UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- POJ 2155 Matrix (二维线段树)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17226 Accepted: 6461 Descripti ...
- ZOJ 1859 Matrix Searching(二维线段树)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1859 Matrix Searching Time Limit: 10 Seco ...
- POJ2155 Matrix 【二维线段树】
题目链接 POJ2155 题解 二维线段树水题,蒟蒻本想拿来养生一下 数据结构真的是有毒啊,, TM这题卡常 动态开点线段树会TLE[也不知道为什么] 直接开个二维数组反倒能过 #include< ...
- POJ 2155 Matrix【二维线段树】
题目大意:给你一个全是0的N*N矩阵,每次有两种操作:1将矩阵中一个子矩阵置反,2.查询某个点是0还是1 思路:裸的二维线段树 #include<iostream>#include< ...
- uva 11992 Fast Matrix Operations 线段树模板
注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...
- 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations
题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...
- UVA 11992 Fast Matrix Operations(线段树:区间修改)
题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...
随机推荐
- swift学习笔记之-构造过程
//构造过程 import UIKit /* 构造过程(Initialization): 1.构造过程是使用类.结构体或枚举类型的一个实例的准备过程.在新实例可用前必须执行这个过程,具体操作包括设置实 ...
- Vue混合
gitHub地址: https://github.com/lily1010/vue_learn/tree/master/lesson13 一 定位 混合以一种灵活的方式为组件提供分布复用功能.混合对象 ...
- 基于h5的图片无刷新上传(uploadifive)
基于h5的图片无刷新上传(uploadifive) uploadifive简介 了解uploadify之前,首先了解来一下什么是uploadify,uploadfy官网,uploadify和uploa ...
- JavaScript中的ParseInt("08")和“09”返回0的原因分析及解决办法
今天在程序中出现一个bugger ,调试了好久,最后才发现,原来是这个问题. 做了一个实验: alert(parseInt("01")),当这个里面的值为01====>07时 ...
- Oracle数据库中创建表空间语句
1:创建临时表空间 create temporary tablespace user_temp tempfile 'Q:\oracle\product\10.2.0\oradata\Test\xyrj ...
- C++ RTTI
一.定义:RTTI:Run Time Type Identification ,运行时类型识别:指程序能够使用基类的指针或引用来检索其所指对象的实际派生类型.二.使用方式:C++中有两个操作符提供RT ...
- git学习笔记1
很早以前就听说了git,今天就开始使用git,并做简单记录 在Linux上安装Git 首先,你可以试着输入git,看看系统有没有安装Git: $ git The program 'git' is cu ...
- C语言-08-预处理器
C预处理器,C Preprocessor简称CPP.C预处理器不是编译器的一部分,它是一个单独的文本替换工具,指示编译器在实际编译之前需要完成的工作. 常用的预处理器指令 #include 包含头文件 ...
- 让div中的table居中
div 标签上写 style="text-align:center" div中的table中写 style="margin:auto;" <table ...
- 怎么录制Android视频
有时候我们做了一个Android App想发篇技术文章分享给大家看看效果,该怎么录制这个demo视频呢? 如果你采用的是Android4.4以上版本,可以直接用以下命令来录制视频 adb shell ...