背景##

在上篇:storm的基础框架分析

基本探讨了storm的:

  1. worker、executor等组件的关系.
  2. 线程模型和消息系统.
  3. 任务分配流程.
  4. topology提交到执行的过程.

但,感觉对nimbus、supervisor、并行度,任务分配和负载均衡的关系没有交代清楚,而且细节上也有些瑕疵,本篇做一个补充。

基础组件之间的关系##

这里做一些补充:

  1. worker是一个进程,由supervisor启动,并只负责处理一个topology,所以不会同时处理多个topology.
  2. executor是一个线程,由worker启动,是运行task的物理容器,其和task是1 -> N关系.
  3. component是对spout/bolt/acker的抽象.
  4. task也是对spout/bolt/acker的抽象,不过是计算了并行度之后。component和task是1 -> N 的关系.

supervisor会定时从zookeeper获取topologies、已分配的任务分配信息assignments及各类心跳信息,以此为依据进行任务分配。

在supervisor周期性地进行同步时,会根据新的任务分配来启动新的worker或者关闭旧的worker,以响应任务分配和负载均衡。

worker通过定期的更新connections信息,来获知其应该通讯的其它worker。

worker启动时,会根据其分配到的任务启动一个或多个executor线程。这些线程仅会处理唯一的topology。

executor线程负责处理多个spouts或者多个bolts的逻辑,这些spouts或者bolts,也称为tasks。

并行度的计算##

相关配置及参数的意义###

具体有多少个worker,多少个executor,每个executor负责多少个task,是由配置和指定的parallelism-hint共同决定的,但指定的并行度并不一定等于实际运行中的数目。

1、TOPOLOGY-WORKERS参数指定了某个topology运行时需启动的worker数目.

2、parallelism-hint指定某个component(组件,如spout)的初始executor的数目.

3、TOPOLOGY-TASKS是component的tasks数,计算稍微复杂点:

(1). 如果未指定TOPOLOGY-TASKS,此值等于初始executors数.

(2). 如果已指定,和TOPOLOGY-MAX-TASK-PARALLELISM值进行比较,取小的那个作为实际的TOPOLOGY-TASKS.

用代码来表达就是:

(defn- component-parallelism [storm-conf component]
(let [storm-conf (merge storm-conf (component-conf component))
num-tasks (or (storm-conf TOPOLOGY-TASKS) (num-start-executors component))
max-parallelism (storm-conf TOPOLOGY-MAX-TASK-PARALLELISM)
]
(if max-parallelism
(min max-parallelism num-tasks)
num-tasks)))

4、对于acker这种特殊的bolt来说,其并行度计算如下:

(1). 如果指定了TOPOLOGY-ACKER-EXECUTORS,按这个值计算.

(2). 如果未指定,那么按TOPOLOGY-WORKERS的值来设置并行度,这种情况下,一个acker对应一个worker,显然,在计算任务繁重、数据量比较大的情况下,这是不合适的。

5、如果配置了NIMBUS-SLOTS-PER-TOPOLOGY,在提交topology到nimbus时,会验证topology所需的worker总数,如果超过了这个值,说明不能够满足需求,则抛出异常。

6、如果配置了NIMBUS-EXECUTORS-PER-TOPOLOGY,如第5点,会验证topology所需的executor总数,如果超出,也会抛出异常。

同时,需要注意,实际运行中,有可能出现并行的TASKS数小于指定的数量。

通过调用nimbus接口的rebalance或者do-rebalance操作,以上并行度可被动态改变。

并行度计算在任务分配中的体现###

先回顾下任务分配中的几个主要角色:

接着看几段重要的并行度计算代码:

1、计算所有topology的topology-id到executors的映射关系:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 计算所有tolopogy的topology-id到executors的映射
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defn- compute-topology->executors [nimbus storm-ids]
"compute a topology-id -> executors map"
(into {} (for [tid storm-ids]
{tid (set (compute-executors nimbus tid))})))

2、计算topology-id到executors的映射信息:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 计算topology-id到executors的映射
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defn- compute-executors [nimbus storm-id]
(let [conf (:conf nimbus)
storm-base (.storm-base (:storm-cluster-state nimbus) storm-id nil)
component->executors (:component->executors storm-base)
storm-conf (read-storm-conf conf storm-id)
topology (read-storm-topology conf storm-id)
task->component (storm-task-info topology storm-conf)]
(->> (storm-task-info topology storm-conf)
reverse-map
(map-val sort)
(join-maps component->executors)
(map-val (partial apply partition-fixed))
(mapcat second)
(map to-executor-id)
)))

3、计算topology的任务信息 task-info,这里TOPOLOGY-TASKS就决定了每个组件component(spout、bolt)的并行度,或者说tasks数:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 计算topology的task-info
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defn storm-task-info
"Returns map from task -> component id"
[^StormTopology user-topology storm-conf]
(->> (system-topology! storm-conf user-topology)
all-components
;; 获取每个组件的并行数
(map-val (comp #(get % TOPOLOGY-TASKS) component-conf))
(sort-by first)
(mapcat (fn [[c num-tasks]] (repeat num-tasks c)))
(map (fn [id comp] [id comp]) (iterate (comp int inc) (int 1)))
(into {})
))

4、上述1、2、3段代码会在nimbus进行任务分配时调用,任务分配是通过mk-assignments函数来完成,调用过程用伪代码描述如下:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; nimbus进行任务分配
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mk-assignments
;; 这一步计算topology的所有executor对应的node + port信息
->compute-new-topology->executor->node+port
->compute-topology->executors
-> ...

nimbus进行任务分配##

这里回顾并补充下nimbus进行任务分配的主要流程:

任务分配的流程###

1、nimbus将一组node + port 称为worker-slot,由executor到worker-slot的映射信息,就决定executor将在哪台机器、哪个worker进程运行,随之spout、bolt、acker等位置也就确定了,如下图所示:

2、 nimbus是整个集群的控管核心,总体负责了topology的提交、运行状态监控、负载均衡及任务分配等工作。

3、nimbus分配的任务包含了topology代码所在的路径(在nimbus本地)、tasks、executors及workers信息。

worker由node + port及配置的worker数量来唯一确定。

任务信息Assignment结构如下:

3、supervisor负责实际的同步worker的操作。一个supervisor称为一个node。所谓同步worker,是指响应nimbus的任务分配,进行worker的建立、调度与销毁。

在收到任务时,如果相关的topology代码不在本地,supervisor会从nimbus下载代码并写入本地文件。

4、 通过node、port、host信息的计算,worker就知道和哪些机器进行通讯,而当负载均衡发生、任务被重新分配时,这些机器可能发生了变化,worker会通过周期性的调用refresh-connections来获知变化,并进行新连接的建立、废弃连接的销毁等工作,如下图所示:

任务分配的依据###

supervisor、worker、executor等组件的心跳信息会同步至zookeeper,nimbus会周期性地获取这些信息,结合已分配的任务信息assignments、集群现有的topologies(已运行+未运行)等等信息,来进行任务分配,如下图所示:

任务分配的时机###

1、通过rebalance和do-reblalance(比如来自web调用)触发负载均衡,会触发mk-assignments即任务分配。

2、同时,nimbus进程启动后,会周期性地进行任务分配。

3、客户端通过storm jar ... topology 方式提交topology,会通过thrift调用nimbus接口,提交topology,启动新storm实例,并触发任务分配。

负载均衡##

负载均衡和任务分配是连在一起的,或者说任务分配中所用到的关键信息是由负载均衡来主导计算的,上文已经分析了任务分配的主要角色和流程,那么负载均衡理解起来就很容易了,流程和框架如下图所示:

其中,负载均衡部分的策略可采用平均分配、机器隔离或topology隔离后再分配、Round-Robin等等,因为主要讨论storm的基础框架,而具体的负载均衡策略各家都不一样,而且这个策略是完全可以自定义的,比如可以将机器的实际能力如CPU、磁盘、内存、网络等等资源抽象为一个一个的资源slot,以此slot为单位进行分配,等等。

这里就不深入展开了。

通过负载均衡得出了新的任务分配信息assignments,nimbus再进行一些转换计算,就会将信息同步到zookeeper上,supervisor就可以根据这些信息来同步worker了。

结语##

本篇作为对上篇的补充和完善.

也完整地回答了这个问题:

在Topology中我们可以指定spout、bolt的并行度,在提交Topology时Storm如何将spout、bolt自动发布到每个服务器并且控制服务的CPU、磁盘等资源的?

终。

storm如何分配任务和负载均衡?的更多相关文章

  1. SpringCloud基本模块分配搭建以及负载均衡

    springcloud是基于springboot的一套微服务的解决方案,springboot可以快速构建单个应用服务,而springcloud没有重复造轮子而是将现有的技术(服务发现,负载均衡等)整合 ...

  2. 【转】《从入门到精通云服务器》第七讲—负载均衡和CDN技术

    在IDC知识中,我们常常会遇上负载均衡与CDN的概念而不知所云.第一讲[什么是云计算], 我们提到过负载均衡,仅给大家留下了印象.这次我们将深入浅出的讲讲到底什么是负载均衡与CDN技术.---互联网数 ...

  3. 通过Nginx实现负载均衡

    百度了下负载均衡:英文名称为Load Balance,其意思就是分摊到多个操作单元上进行执行,例如Web服务器.FTP服务器.企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务 嗯,跟我理 ...

  4. 简述负载均衡&CDN技术

    曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需要从无数个角度去考虑他,大到服务器的布局,小到软件中某个文 ...

  5. 网站访问架构cdn与负载均衡

    曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需 要从无数个角度去考虑他,大到服务器的布局,小到软件中某个 ...

  6. 简述负载均衡&CDN技术(转)

    曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需要从无数个角度去考虑他,大到服务器的布局,小到软件中某个文 ...

  7. [转]简述负载均衡和CDN技术

    http://blog.jobbole.com/86066/ 曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系 ...

  8. 简述负载均衡和CDN技术

    曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需要从无数个角度去考虑他,大到服务器的布局,小到软件中某个文 ...

  9. 消费者用nginx做负载均衡,提供者用zookeeper自带功能实现负载均衡

    公司的项目基于阿里的Dubbo微服务框架开发.为了符合相关监管部门的安全要求,公司购买了华东1.华东2两套异地服务器,一套是业务服务器,一套是灾备服务器.准备在这两套服务器上实现Dubbo的分布式服务 ...

随机推荐

  1. MySQL 中的 FOUND_ROWS() 与 ROW_COUNT() 函数

    移植sql server 的存储过程到mysql中,遇到了sql server中的: IF @@ROWCOUNT < 1 对应到mysql中可以使用 FOUND_ROWS() 函数来替换. 1. ...

  2. CentOS下SSH无密码登录的配置

    1.确认本机sshd的配置文件(需要root权限) $ gedit /etc/ssh/sshd_config 找到以下内容,并去掉注释符"#" RSAAuthentication ...

  3. 机器学习:logistic回归

    逻辑回归是一个形式是Y=1/(1+E(-X))的函数,它的特点是: 1, 当X>0,随着X增大,Y很快的接近1: 2,当x<0,随着X的减小,Y很快的接近0: 3,当X=0时,Y=1/2. ...

  4. NOIP2010普及组T3 接水问题 ——S.B.S.

    题目描述 学校里有一个水房,水房里一共装有 m 个龙头可供同学们打开水,每个龙头每秒钟的 供水量相等,均为 1. 现在有 n 名同学准备接水,他们的初始接水顺序已经确定.将这些同学按接水顺序从 1到 ...

  5. 图的遍历之深度优先搜索(DFS)

    深度优先搜索(depth-first search)是对先序遍历(preorder traversal)的推广.”深度优先搜索“,顾名思义就是尽可能深的搜索一个图.想象你是身处一个迷宫的入口,迷宫中的 ...

  6. hdu 5802 Windows 10 贪贪贪

    传送门:hdu 5802 Windows 10 题意:把p变成q:升的时候每次只能升1,降的时候如果前一次是升或者停,那么下一次降从1开始,否则为前一次的两倍 官方题解: 您可能是正版Windows ...

  7. ajax请求json数据案例

    今天有这样一个需求,点击六个大洲,出现对应的一些请求信息,展示在下面,请求请求过后,第二次点击就无需请求.如图所示:点击北美洲下面出现请求的一些数据 html代码结构: <div class=& ...

  8. [推荐] BC/Beyond Compare(差异比较软件)

    Beyond Compare 前一段时间,介绍过用Total Commander来完成文件夹同步的时候,一位朋友留言推荐了Beyond Compare--一个强大的超越了文件差异比较的工具.Beyon ...

  9. 一个完整的JENKINS下的ANT BUILD.XML文件

    网上看见的,确实很全,该有的基本都覆盖到了.自己拿来稍微改改就可以用了. 注:property中的value是你自己的一些本地变量.需要改成自己的 <?xml version="1.0 ...

  10. java14-9 Doteformat的练习

    需求: 键盘录入出生年月日,计算出距离现在已经生活了几天 分析: A:创建键盘录入固定模式的字符串 B:计算步骤: a:把输入进来的字符串格式化成日期 b:获取现在的日期,减去格式化后的日期 c:把得 ...