题目描述

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。

例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为M=10000的一个解。

输入输出格式

输入格式:

包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。

输出格式:

每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。

输入输出样例

输入样例#1:

combo.in
10000
输出样例#1:

combo.out
18 142
297 328
388 412
1998 2002

代码

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int m,x,y;
bool can(double x)//判断是否为整数,就不讲了,应该能看懂
{
if((int)x==x) return true;
else return false;
}
int main()
{
scanf("%d",&m);
double h;
for(int i=;i<=m/;i++) //枚举x
{
h=sqrt(*m+(i-0.5)*(i-0.5))-0.5; //这就是推出的公式
if(can(h)) printf("%d %d\n",i,(int)h);
}
return ;
}

抄来的直接看题解就好

连题解也是转载的QAQ

给出M,有等差数列求和公式得:设区间[x,y]上M=(x+y)*(x-y+1)/2 顺便提一下 x-y+1 为自然数个数

化简得到 y方-y=x方+x-2*M;进一步两边同时加一个1/4 可得 (y-1/2)方=(x+1/2)方-2*M;

于是两边开方 有y=根号下((x+1/2)方-2*M)+1/2;

那么我们就枚举x i=1;i<=M/2;i++ 因为至少是两个数相加所以枚举到一半即可;

可以算出每一个x对应的y 只需判断其是否为整数 如果是那么合题输出一组;

洛谷 P1147 连续自然数和 Label:等差数列的更多相关文章

  1. 洛谷 P1147 连续自然数和

    洛谷 P1147 连续自然数和 看到dalao们的各种高深方法,本蒟蒻一个都没看懂... 于是,我来发一篇蒟蒻友好型的简单题解 #include<bits/stdc++.h> using ...

  2. 洛谷P1147 连续自然数和 [2017年6月计划 数论01]

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  3. 洛谷——P1147 连续自然数和

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  4. 洛谷 P1147 连续自然数和 题解

    P1147 连续自然数和 题目描述 对一个给定的自然数MM,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为MM. 例子:1998+1999+2000+2001+2002 = 100001 ...

  5. 洛谷P1147 连续自然数和 题解 枚举

    题目链接:https://www.luogu.com.cn/problem/P1147 题目大意: 给你一个数 \(M\) ,求有多少对连续自然数对之和为 \(M\),输出这列连续自然数对的首项和末项 ...

  6. 洛谷P1147 连续自然数和【二分】

    题目:https://www.luogu.org/problemnew/show/P1147 题意: 给定一个数m,问有多少个数对$(i,j)$,使得$i$到$j$区间的所有整数之和为m.输出所有的解 ...

  7. 洛谷P1147 连续自然数和

    https://www.luogu.org/problem/P1147 #include<bits/stdc++.h> using namespace std; int main(){ i ...

  8. 洛谷 P1147 连续自然数和 (滑动窗口)

    维护一个滑动窗口即可 注意不能有m到m的区间,因为区间长度要大于1 #include<cstdio> #define _for(i, a, b) for(int i = (a); i &l ...

  9. P1147连续自然数和

    洛谷1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所 ...

随机推荐

  1. Linux 制作ftp远程yum仓库

    一.下载createrepo yum install createrepo -y 二.安装vsftp软件 yum install vsftpd -y 三.将pub制作为yum仓库 把需要的rpm包拷贝 ...

  2. Linux 实现rsyslog日志里面的IP地址记录 未测试

    之前我是在bashrc中添加了一句,让系统操作日志时向rsyslog发送一份内容,现在只要在发送的时候,自己再获取下当前的远程登录IP加进去就可以,像这样 /etc/bashrc sshClientI ...

  3. Windbg程序调试--转载

    WinDbg是微软发布的一款相当优秀的源码级(source-level)调试工具,可以用于Kernel模式调试和用户模式调试,还可以调试Dump文件. WinDbg是微软很重要的诊断调试工具: 可以查 ...

  4. MongoDB副本集学习(一):概述和环境搭建

    MongoDB副本集概述 以下图片摘自MongoDB官方文档:http://docs.mongodb.org/manual/core/replication-introduction/ Primary ...

  5. JavaScript设计模式 - 代理模式

    代理模式是为一个对象提供一个代用品或占位符,以便控制对它的访问 代理模式的用处(个人理解):为了保障当前对象的单一职责(相对独立性),而需要创建另一个对象来处理调用当前对象之前的一些逻辑以提高代码的效 ...

  6. Androidi性能优化之Java代码优化(摘自Android性能优化一书)

    代码优化不是应用开发的首要任务,提供良好的用户体验并专注于代码的可维护性,这才是你的首要任务.事实上,代码优化应该是最后才做,甚至完全可能不去做,不过,良好的优化可以使程序性能直接达到一个可接受的水平 ...

  7. Razor入门

    一.Razor简介Razor不是编程语言,它是一种允许您向网页中嵌入基于服务器的代码的标记语法,也就是可以在html网页中嵌入的写入C#代码,Razor在VS中有自动提示,使用起来会方便一点,如下代码 ...

  8. ubuntu 彻底删除卸载

    1911 sudo apt-get install zabbix-agent 1916 sudo apt-get autoremove zabbix_agent root@(none):~# apt- ...

  9. 【Android 进阶】临时卸载root和恢复root功能

    [前言]为什么有这个需求? Q:首先,谈谈为啥想要root呢? A:有root才能有控制权,也才能折腾很多东西,比如:删删流氓软件,用用代理.软件自动安装等: Q:然后,那么为何又需要删除root呢? ...

  10. SQL DEVELOPER工具找不到database时的解决

    1.配置SQL DEVELOPER管理工具 这里省略Oracle数据库和PL/SQL Developer的安装步骤,注意在安装PL/SQL Developer软件时,不要安装在Program File ...