题目描述

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。

例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为M=10000的一个解。

输入输出格式

输入格式:

包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。

输出格式:

每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。

输入输出样例

输入样例#1:

combo.in
10000
输出样例#1:

combo.out
18 142
297 328
388 412
1998 2002

代码

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int m,x,y;
bool can(double x)//判断是否为整数,就不讲了,应该能看懂
{
if((int)x==x) return true;
else return false;
}
int main()
{
scanf("%d",&m);
double h;
for(int i=;i<=m/;i++) //枚举x
{
h=sqrt(*m+(i-0.5)*(i-0.5))-0.5; //这就是推出的公式
if(can(h)) printf("%d %d\n",i,(int)h);
}
return ;
}

抄来的直接看题解就好

连题解也是转载的QAQ

给出M,有等差数列求和公式得:设区间[x,y]上M=(x+y)*(x-y+1)/2 顺便提一下 x-y+1 为自然数个数

化简得到 y方-y=x方+x-2*M;进一步两边同时加一个1/4 可得 (y-1/2)方=(x+1/2)方-2*M;

于是两边开方 有y=根号下((x+1/2)方-2*M)+1/2;

那么我们就枚举x i=1;i<=M/2;i++ 因为至少是两个数相加所以枚举到一半即可;

可以算出每一个x对应的y 只需判断其是否为整数 如果是那么合题输出一组;

洛谷 P1147 连续自然数和 Label:等差数列的更多相关文章

  1. 洛谷 P1147 连续自然数和

    洛谷 P1147 连续自然数和 看到dalao们的各种高深方法,本蒟蒻一个都没看懂... 于是,我来发一篇蒟蒻友好型的简单题解 #include<bits/stdc++.h> using ...

  2. 洛谷P1147 连续自然数和 [2017年6月计划 数论01]

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  3. 洛谷——P1147 连续自然数和

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  4. 洛谷 P1147 连续自然数和 题解

    P1147 连续自然数和 题目描述 对一个给定的自然数MM,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为MM. 例子:1998+1999+2000+2001+2002 = 100001 ...

  5. 洛谷P1147 连续自然数和 题解 枚举

    题目链接:https://www.luogu.com.cn/problem/P1147 题目大意: 给你一个数 \(M\) ,求有多少对连续自然数对之和为 \(M\),输出这列连续自然数对的首项和末项 ...

  6. 洛谷P1147 连续自然数和【二分】

    题目:https://www.luogu.org/problemnew/show/P1147 题意: 给定一个数m,问有多少个数对$(i,j)$,使得$i$到$j$区间的所有整数之和为m.输出所有的解 ...

  7. 洛谷P1147 连续自然数和

    https://www.luogu.org/problem/P1147 #include<bits/stdc++.h> using namespace std; int main(){ i ...

  8. 洛谷 P1147 连续自然数和 (滑动窗口)

    维护一个滑动窗口即可 注意不能有m到m的区间,因为区间长度要大于1 #include<cstdio> #define _for(i, a, b) for(int i = (a); i &l ...

  9. P1147连续自然数和

    洛谷1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所 ...

随机推荐

  1. Android判断网络是否连接

    <!-- 配置文件判断网络是否连接 --> <uses-permission android:name="android.permission.ACCESS_NETWORK ...

  2. 2.django笔记之缓存,session,cookie,ajax

    一.django缓存 1.缓存 缓存的意义在于把昂贵的计算结果保存起来一遍下次的访问,有缓存的站点的流程大概是这样子的: 给定一个url,检查页面是否在缓存中 如果在,返回缓存的页面 否则,生成该页面 ...

  3. CKeditor与CKfinder的简单配置

    1.关掉PHP的转义字符,不然从文本框控件中得来的内容,全部有转义字符,不能正常显示,所以在取得文本框控件所传递来的数据之时,要使用下面这样的方式: $内容=stripslashes($_POST[' ...

  4. mybatis的jdbcType类型

    在用mybatis的时候,如果传过来的参数有可能为空,那么就要指定jdbcType是什么了,否则会有异常,jdbcType有以下几种: BIT         FLOAT      CHAR      ...

  5. atom 震动特效

    1.下载atom 2.配置环境变量 3.运行apm install activate-power-mode 4.打开Atom激活(control+alt+o(是o不是零)) 注:新标签若没效果可以ct ...

  6. Win7下Event_Log服务4201错误的有效解决方法

    在对Windows7系统进行某些优化或者更改了用户权限之后,会导致Window7系统的“事件查看器”无法启动,显示相关服务没有运行,而对相应服务Windows Event Log进行手动启动的时候,会 ...

  7. 水果姐逛水果街Ⅰ(codevs 3304)

    题目描述 Description 水果姐今天心情不错,来到了水果街. 水果街有n家水果店,呈直线结构,编号为1~n,每家店能买水果也能卖水果,并且同一家店卖与买的价格一样. 学过oi的水果姐迅速发现了 ...

  8. GCM 发送接收消息 Message Client Server 服务器端,客户端

    GCM 传递参数 最近用了很多时间做GCM,由于碰到很多问题,因此详细做一下记录,以方便各位网友,不用再走我的重复的路.不过我试了一下GCM在国内很不好用.假如开发国外的程序的话,用GCM倒是很不错的 ...

  9. Android拼图游戏

    效果如下 游戏的设计 首先我们分析下如何设计这款游戏: 1.我们需要一个容器,可以放这些图片的块块,为了方便,我们准备使用RelativeLayout配合addRule实现 2.每个图片的块块,我们准 ...

  10. hadoop的关键进程

    hadoop集群中主要进程有master:   NameNode, ResourceManager,slaves:   DataNode, NodeManager,  RunJar, MRAppMas ...