1268. Little Chu

Time limit: 0.25 second
Memory limit: 64 MB
The favorite occupation of Little Chu is to sleep. Strictly speaking, he is busy with nothing but sleeping. Sometimes he wakes up and than the mankind makes some Great Discovery. For the first time Little Chu woke up K days after his birth. For the second time he woke up K2 after his birth. For the third time — K3 days after his birth. This rule still holds true.
Each time whem Little Chu wakes up he looks at the calendar and remembers what day of week is today. They say that if the day of week will be repeated, than Litle Chu will start crying and his tears will flood the world.
Your task is to make the largest number of the Great Discoveries and maximally to delay the doomsday. Determine when should Little Chu be awaken for the first time if it is known that he can’t sleep more than one week after his birth.

Input

The first line contains integer T (1 ≤ T ≤ 6553) — the number of tests. Each of the next T lines contains integer N (2 < N < 65536) — the number of days in the week. N is prime.

Output

K for each input test.

Sample

input output
4
3
5
7
11
2
3
5
8
Problem Author: Pavel Atnashev
Problem Source: Ural State University championship, October 25, 2003
Difficulty: 805
 
题意:给出m,找出一个k是的k^1 k^2 k^3...k^x mod m 后各不相同
分析:
如果发现有
k^t = k (mod m)
k^(t-1) = 1(mod m)
换个形式
q^t=1(mod m)
因为m是质数,根据xx定理,有 q^(m-1) = 1(mod m)
所以,t跟定有 t%(m-1) == 0
因为t < m-1,且t%(m-1) == 0
那是不是我们只用枚举m-1的因数?
太多了。
发现t至少整除(m-1)/pi中的一个。
q^t = 1(mod m)
q^(m-1) = 1(mod m)
显然q^((m-1)/pi) = 1(mod m)
所以只需检验是否存在一个pi使q^((m-1)/pi) = 1(mod m)
检验一个数的复杂度降至(m-1)的质因数个数。
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
bool Visit[N];
int Prime[N], Tot;
int n; inline void GetPrime()
{
For(i, , N - )
{
if(!Visit[i]) Prime[++Tot] = i;
For(j, , Tot - )
{
if(i * Prime[j] > N - ) break;
Visit[i * Prime[j]] = ;
if(!(i % Prime[j])) break;
}
}
} inline void Solve(); inline void Input()
{
GetPrime();
int TestNumber;
scanf("%d", &TestNumber);
while(TestNumber--)
{
scanf("%d", &n);
Solve();
}
} inline int Power(int y, int Times)
{
LL Ret = , x = 1LL * y;
while(Times)
{
if(Times & ) Ret = (Ret * x) % n;
x = (x * x) % n, Times >>= ;
}
return Ret;
} inline void Solve()
{
static int Arr[N], Len;
Len = ;
int Tmp = n - ;
For(i, , Tot)
{
if(Tmp < Prime[i]) break;
if(!(Tmp % Prime[i]))
{
Arr[++Len] = Prime[i];
while(!(Tmp % Prime[i]))
Tmp /= Prime[i];
}
}
if(Tmp > ) Arr[++Len] = Tmp; Ford(Ans, n - , )
{
bool Flag = ;
For(i, , Len)
if(Power(Ans, (n - ) / Arr[i]) == )
{
Flag = ;
break;
}
if(!Flag)
{
printf("%d\n", Ans);
break;
}
}
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("D");
#endif
Input();
//Solve();
return ;
}

ural 1268. Little Chu的更多相关文章

  1. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  2. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  3. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  4. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  5. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  6. ural 2069. Hard Rock

    2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...

  7. ural 2068. Game of Nuts

    2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...

  8. ural 2067. Friends and Berries

    2067. Friends and Berries Time limit: 2.0 secondMemory limit: 64 MB There is a group of n children. ...

  9. ural 2066. Simple Expression

    2066. Simple Expression Time limit: 1.0 secondMemory limit: 64 MB You probably know that Alex is a v ...

随机推荐

  1. HDU 4858 项目管理(邻接表 暴力模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4858 我们建造了一个大项目!这个项目有n个节点,用很多边连接起来,并且这个项目是连通的! 两个节点间可 ...

  2. 用Prime31实现Google Play In-App-Blling

    Android开发者想在海外赚钱,接入Google Play是不二选择,然而一堆英文文档对于像我这样的英语四级都木有过的可谓是苦恼之极.近段时间因工作需要研究了Unity接入Google Play的整 ...

  3. Rotate bitmap by real angle

    tl;dr; Use GDI+ SetWorldTransform With WinAPI's SetWorldTransform you can transform the space of dev ...

  4. Cannot locate factory for objects of type DefaultGradleConnector, as ConnectorServiceRegistry has been closed.

    现象:更换android studio libs文件夹下的jar包,重新编译代码报错:Cannot locate factory for objects of type DefaultGradleCo ...

  5. wordpress工作原理

    WP初始化的过程:当你输入<yourlink>/wordpress对wordpress进行初始化时,wordpress默认会找根目录下的index.php页面,看一下index.php页面 ...

  6. 【Django】Django 如何实现 如下 联表 JOIN 查询?

    SQL语句: select distinct a.device_hash, sum(b.cmn_merge_count) from (select distinct device_hash from ...

  7. Merge Two Sorted Arrays

    Merge two given sorted integer array A and B into a new sorted integer array. Example A=[1,2,3,4] B= ...

  8. 基于centos搭建nginx+uwsgi运行django环境

    环境: CentOS 7 nginx/1.9.12 Python 2.7.5 一:安装依赖包5 yum install zlib-devel bzip2-devel pcre-devel openss ...

  9. Gym 100851E Easy Problemset (模拟题)

    Problem E. Easy ProblemsetInput file: easy.in Output file: easy.outPerhaps one of the hardest problems ...

  10. 有时间测试dism

    dism /capture-image /imagefile:d\win.win /capturedir:c:\ /name:win81 dism /export-image /winboot /so ...